Formation and recondensation of complex organics during luminosity outbursts

Vianney Taquet, Leiden Observatory

Steven Charnley, Eva Wirstrom

KIDA workshop, 07/05/14

Complex organics in low-mass protostars

A dozen of N- and O- complex organics have been detected in high abundances toward low-mass protostars (Cazaux et al. 2003, Bottinelli et al. 2004, 2007)

Interferometric observations show that COMs mostly originate from **inner (< 50 AU) regions**

COMs are **as abundant** in low-mass protostars as in high-mass hot cores

Formation of complex organics

Luminosity outbursts in embedded protostars

... But the Early stages of star formation likely undergo episodic luminosity outbursts!

Luminosity outbursts and chemical evolution

Gas phase chemical network

Update of the gas phase chemical network from Rodgers & Charnley (2001) including rates of key reactions recently measured or computed:

- Methyl formate now formed from HCOOH + $CH_3OH_2^+ \longrightarrow HC(OH)OCH_3^+ + H_2O$ (Neill et al. 2011 and Cole et al. 2012)

Electronic recombination measured for several protonated COMs (Geppert et al. 2006, Hamberg et al. 2010, Vigren et al. 2010)
 XH⁺ + e⁻ → X + H BR ≈ 5 - 10 %

- Highly exothermic proton transfer reaction between protonated COMs and NH_3 (not included in KIDA/OSU/UMIST databases ?) $XH^+ + NH_3 \longrightarrow X + NH_4^+$ (rate of $\approx 10^{-9} \text{ cm}^{3} \cdot \text{s}^{-1}$ taken from similar reactions)

Binding energies and initial abundances

Species	$X_{ m ini}$	E_b	$\operatorname{Ref}(E_b).$
H_2O	1×10^{-4}	5775	1
CO	3.8×10^{-5}	1150	2
N_2	1.6×10^{-5}	790	3
CO_2	3.0×10^{-5}	2690	4
CH_4	5.0×10^{-6}	1090	5
$\rm NH_3$	5.0×10^{-6}	3075	6
H_2CO	2.5×10^{-6}	3260	7
CH_3OH	7.0×10^{-6}	5530	2
HCOOH	1.6×10^{-6}	5570	2]
C_2H_5OH	1.6×10^{-6}	6795	8
CH ₃ OCH ₃	0	4230	8
CH ₃ OCHO	0	4630	8
$\rm CH_3CN$	0	4680	2
CH_3CHO	0	3800	9

Suffer from high uncertainties due to contamination from other tertiary species/mixtures

NOTE. — ¹: Fraser et al. (2001); ²: Collings et al. (2004); ³: Bisschop et al. (2006); ⁴: Noble et al. (2012a); ⁵: Herrero et al. (2010); ⁶: Sandford & Allamandola (1993); ⁷: Noble et al. (2012b); ⁸: Lattelais et al. (2011); ⁹: Öberg et al. (2009);

Binding energies and initial abundances

Species	$X_{ m ini}$	E_b	$\operatorname{Ref}(E_b).$
H_2O	1×10^{-4}	5775	1
CO	3.8×10^{-5}	1150	2
N_2	1.6×10^{-5}	790	3
CO_2	3.0×10^{-5}	2690	4
CH_4	5.0×10^{-6}	1090	5
$\rm NH_3$	5.0×10^{-6}	3075	6
H_2CO	2.5×10^{-6}	3260	7
CH_3OH	7.0×10^{-6}	5530	2
HCOOH	1.6×10^{-6}	5570	2
C_2H_5OH	1.6×10^{-6}	6795	8
CH_3OCH_3	0	4230	8
CH ₃ OCHO	0	4630	8
CH_3CN	0	4680	2
CH_3CHO	0	3800	9

- Initial abundances taken from IR observations of ices towards low-mass and high-mass protostars (see Tielens et al. 1991, Oberg et al. 2011)

- **Differences in binding energies** between methanol and COMs

→ different temperatures of sublimation

NOTE. — ¹: Fraser et al. (2001); ²: Collings et al. (2004); ³: Bisschop et al. (2006); ⁴: Noble et al. (2012a); ⁵: Herrero et al. (2010); ⁶: Sandford & Allamandola (1993); ⁷: Noble et al. (2012b); ⁸: Lattelais et al. (2011); ⁹: Öberg et al. (2009);

COMs formation for static physical conditions

Gas phase chemistry produces high abundances of COMs ! → Abundances > 10⁻⁷ can be reached for methyl formate and dimethyl ether

Importance of NH₃ in COMs abundance

NH₃ abundance governs the formation efficiency of COMs:

- Low NH_3 abundance \rightarrow efficient protonation of methanol but low formation of COMs from protonated ions
- High NH_3 abundance \rightarrow efficient formation of COMs from ions but low protonation of methanol

Physical conditions

Luminosity evolution

$$L(t) = (L_{\max} - L_{\min}) \exp(-t/\tau) + L_{\min}$$
$$T(t) = T_{\min} \times (L_{\star}(t)/L_{\min})^{1/4}$$

 $L_{\rm min}$ = 2 L_{\odot} and $L_{\rm max}$ = 100 L_{\odot} τ = 100, 300, 500 yr

 $n_{\rm H} = 10^6, 10^7, 10^8 \text{ cm}^{-3}$ $T_{\rm min} = 45, 75, 105 \text{ K}$

COMs formation during luminosity outbursts

Gas phase chemistry can produce significant amount of COMs (10⁻⁸) in one outburst Low COM binding energies increase their abundance ratios during the recondensation

 $n_{\rm H} = 10^7 \text{ cm}^{-3}; \tau = 300 \text{ yr}$

COMs formation during luminosity outbursts

- High abundance ratios are predicted in dense envelopes (n_H = 10⁸ cm⁻³)
- In low-density envelopes, COMs stay in the gas phase long after the end of the outburst

 $T_{min} = 75 \text{ K}; \tau = 300 \text{ yr}$

Conclusions and Perspectives

✓ Significant contribution of gas phase chemistry to the formation of some complex organics \rightarrow importance of ammonia

✓ Abundance ratios of COMs relative to methanol increase as the envelope cools down after a luminosity outburst because of their low binding energy

✓ In spite of their low-luminosity ($\approx 1 L_{\odot}$), most low-mass protostars might be able to produce COMs in the gas on 100-200 AU scales due to outbursts

Conclusions and Perspectives

✓ Significant contribution of gas phase chemistry to the formation of some complex organics \rightarrow importance of ammonia

✓ Abundance ratios of COMs relative to methanol increase as the envelope cools down after a luminosity outburst because of their low binding energy

✓ In spite of their low-luminosity ($\approx 1 L_{\odot}$), most low-mass protostars might be able to produce COMs in the gas on 100-200 AU scales due to outbursts

→ Extension to other species showing higher/lower binding energies

 \rightarrow Coupling with grain surface chemistry and with more realistic physical models