Isotopic fractionation of deuterium, carbon and nitrogen

Jean Christophe Loison, Bordeaux Kevin Hickson, Bordeaux Mirjana Mladenovic, Marne la Vallée Evelyne Roueff, Observatoire de Paris

Introduction principles of gas phase fractionation reactions Deuterium fractionation in warm conditions new analysis of D, ¹³C and ¹⁵N chemistries Comparison between models and observations Conclusions

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique et Atmosphères

Isotopic fractionation of deuterium, carbon and nitrogen

Jean Christophe Loison, Bordeaux Kevin Hickson, Bordeaux Mirjana Mladenovic, Marne la Vallée Evelyne Roueff, Observatoire de Paris

Introduction principles of gas phase fractionation reactions Deuterium fractionation in warm conditions new analysis of D, ¹³C and ¹⁵N chemistries Comparison between models and observations Conclusions

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique et Atmosphères

Low temperature thermodynamics

Basic mechanism : H_{eavy} / L_{ight} exchange reactions in the gas phase k_f A-L_{ight}⁽⁺⁾ + B-H_{eavy} $\xrightarrow{k_r}$ A-H_{eavy}⁽⁺⁾ + B-L_{ight} + ΔE_0 reservoir trace reservoir trace HD, D H_2 , H ¹²CO, ¹²C+ ¹³CO. ¹³C+ ¹⁵N, ¹⁵NN $^{14}N, N_{2}$

Equilibrium constant: $K(T) = k_f/k_r >> 1$ if $kT << \Delta E_0$

 $k_f = k_L; k_r \ll k_f$

adapted from E. Herbst

Reaction equilibrium constant

A-H⁺ + B-D
$$\underset{k_r}{\overset{k_f}{\longleftarrow}}$$
 A-D⁺ + B-H + ΔE_0

$$K(T) = exp(-\Delta G/kT) = exp(\Delta S/k)exp(\Delta H/T)$$

more precisely

$$K(T) = \frac{k_f}{k_r} = \left(\frac{m_{AD^+} \cdot m_{BH}}{m_{AH^+} \cdot m_{BD}}\right)^{3/2} \times \frac{q(AD^+) \cdot q(BH)}{q(AH^+) \cdot q(BD)} \times exp(\Delta E_0/kT)$$

Internal partition functions : include rotation, nuclear spin, symmetry number

$$q(T) = \sum_{i} g_i \times exp(-E_i/kT)$$

Expression used in astrophysical studies (Terzieva + Herbst, MNRAS 317, 563)

$$K(T) = f(B, M) \times exp(\Delta E_0/kT)$$

State to state chemistry : example of H_3^+ + HD exchange

$CH_3^+ + HD \longrightarrow CH_2D^+ + H_2 \Delta E \approx 650K$ Roueff et al. 2013, JPCA117, 9959

$CH_2D^+ + O$	\longrightarrow	$DCO^+ + H_2$
$CH_2D^+ + N$	\longrightarrow	$DNC^+ + H_2$
$CH_2D^+ + H_2$		$CH_4D^+ + H_2$
$CH_4D^+ + e$	\longrightarrow	$CH_2D + H_2$
$CH_2D + O$	\longrightarrow	HDCO + H

"Warm" chemistry starring CH₂D⁺ in the Orion Bar (Parise et al. 2009, AA508, 737)

Table 7. Summary of column densities, abundances, and D/H ratios in the observed molecules.

Molecule	$N \over (\mathrm{cm}^{-2})$	clump 1 <i>x</i> (cm ⁻³)	XD/XH	N (cm ⁻²)	clump 3 <i>x</i> (cm ⁻³)	XD/XH
H ¹³ CN DCN	$(3.1 \pm 0.4) \times 10^{13}$ $(1.4 \pm 0.3) \times 10^{13}$	$\begin{array}{c} 1.9 \times 10^{-10} \\ 8.8 \times 10^{-11} \end{array}$	0.7 ± 0.2 %	$(2.5 \pm 0.3) \times 10^{13}$ $(1.9 \pm 0.3) \times 10^{13}$	$\begin{array}{c} 1.9 \times 10^{-10} \\ 1.5 \times 10^{-10} \end{array}$	1.1 ± 0.2 %
H ¹³ CO ⁺ DCO ⁺	$(2.0 \pm 1.0) \times 10^{13}$ < 2.2×10^{11}	$\begin{array}{c} 1.3 \times 10^{-10} \\ < 1.4 \times 10^{-12} \end{array}$	$< 2 \times 10^{-4}$	$(1.6 \pm 0.2) \times 10^{13}$ $(6.9 \pm 1.1) \times 10^{11}$	1.2×10^{-10} 5.3×10^{-12}	(6.1 ± 1.1) 10 ⁻⁴
H ₂ ¹³ CO HDCO	-	-	-	$(1.2 \pm 0.1) \times 10^{13}$ $(4.8 \pm 0.8) \times 10^{12}$	9.2×10^{-11} 3.7×10^{-11}	0.6±0.1%
C ₂ D	_	-	-	<2.5×10 ¹³	$< 2 \times 10^{-10}$	-
HNC DNC	-	-	-	1.1×10^{13} < 1.5×10^{11}	<1 × 10 ⁻¹²	<1.4 %
CH ₂ DOH	$< 1.7 \times 10^{14}$	$< 1.1 \times 10^{-9}$	-	<1.9×10 ¹⁴	$< 1.5 \times 10^{-9}$	_
HDO	-	_	_	<4.4×10 ¹³	$<3.4 \times 10^{-10}$	-

Gas phase deuteration fractionation at moderate temperatures

Type A : direct exchange $K_{eq} = \frac{k_{\rightarrow}}{k_{\leftarrow}} = f_{B,M} \times exp(-\Delta E/kT)$ $^{15}NN + N_2H^+ \longrightarrow ^{15}NNH^+ + N_2$ f(B,M) depends on rotational constants and symmetry
(Terzieva+Herbst MNRAS317, 563, 2000)

Type A : direct exchange $K_{eq} = \frac{k_{\rightarrow}}{k_{\leftarrow}} = f_{B,M} \times exp(-\Delta E/kT)$ $^{15}NN + N_2H^+ \longleftarrow ^{15}NNH^+ + N_2$ f(B,M) depends on rotational constants and symmetry
(Terzieva+Herbst MNRAS317, 563, 2000)

Type B: reactions involving adduct formation and leading to direct products without isomerization

¹⁵N⁺ + N₂
$$\implies$$
 ¹⁵NN + N⁺
 $k_{\rightarrow} + k_{\leftarrow} = k_{capture}$
 $k_{\rightarrow} = k_{capture} \times \frac{f(B, M)}{[f(B, M) + exp(-\Delta E/kT)]}$
 $k_{\leftarrow} = k_{capture} \times \frac{exp(-\Delta E/kT)}{[f(B, M) + exp(-\Delta E/kT)]}$

Type A : direct exchange $K_{eq} = \frac{k_{\rightarrow}}{k_{\leftarrow}} = f_{B,M} \times exp(-\Delta E/kT)$ $^{15}NN + N_2H^+ \longleftarrow ^{15}NNH^+ + N_2$ f(B,M) depends on rotational constants and symmetry
(Terzieva+Herbst MNRAS317, 563, 2000)

Type B: reactions involving adduct formation and leading to direct products without isomerization

¹⁵N⁺ + N₂
$$\iff$$
 ¹⁵NN + N⁺
 $k_{\rightarrow} + k_{\leftarrow} = k_{capture}$
 $k_{\rightarrow} = k_{capture} \times \frac{f(B, M)}{[f(B, M) + exp(-\Delta E/kT)]}$
 $k_{\leftarrow} = k_{capture} \times \frac{exp(-\Delta E/kT)}{[f(B, M) + exp(-\Delta E/kT)]}$

Type C: reactions involving adduct formation with isomeric pathways

 $^{13}C + HCN \implies H^{13}CN + C$

The isotopic isomerization reaction competes with the dissociation of the adduct. The rate constant depends on the location of the transition state, and statistical calculations are generally required to estimate the isomerization reaction rate constant

Type A : direct exchange $K_{eq} = \frac{k_{\rightarrow}}{k_{\leftarrow}} = f_{B,M} \times exp(-\Delta E/kT)$ $^{15}NN + N_2H^+ \longleftarrow ^{15}NNH^+ + N_2$ f(B,M) depends on rotational constants and symmetry
(Terzieva+Herbst MNRAS317, 563, 2000)

Type B: reactions involving adduct formation and leading to direct products without isomerization

¹⁵N⁺ + N₂
$$\iff$$
 ¹⁵NN + N⁺
 $k_{\rightarrow} + k_{\leftarrow} = k_{capture}$
 $k_{\rightarrow} = k_{capture} \times \frac{f(B, M)}{[f(B, M) + exp(-\Delta E/kT)]}$
 $k_{\leftarrow} = k_{capture} \times \frac{exp(-\Delta E/kT)}{[f(B, M) + exp(-\Delta E/kT)]}$

Type C: reactions involving adduct formation with isomeric pathways

 $^{13}C + HCN \implies H^{13}CN + C$

The isotopic isomerization reaction competes with the dissociation of the adduct. The rate constant depends on the location of the transition state, and statistical calculations are generally required to estimate the isomerization reaction rate constant

 $^{15}N + NO = ^{15}NO + N$

Carbon + oxygen fractionation reactions in CO and HCO+

Evaluation of ΔE (K) from ZPEs		Exp			
	MR 2014	LGFA 84	L98	HKD77	SA80
$^{13}C^+ + CO \xrightarrow{13}CO + C^+$	34.5	35	36.0		40±6
$^{13}C^{+} + C^{18}O \longrightarrow ^{13}C^{18}O + C^{+}$	35.4	36	37.5		
$HCO^+ + {}^{13}CO \longrightarrow H^{13}CO^+ + CO$	17.8	9	20	16.5	12±5
$HCO^{+} + C^{18}O \longrightarrow HC^{18}O^{+} + CO$	6.4	14	7.5	6.2	15±5
$HCO^{+} + {}^{13}C^{18}O \longrightarrow H^{13}C^{18}O^{+} + CO$	24.2	22	27	22.6	
$H^{13}CO^{+} + {}^{13}C^{18}O \longrightarrow H^{13}C^{18}O^{+} + {}^{13}CO^{-}$	6.4	13	7.0	6.1	
$HC^{18}O^{+} + {}^{13}CO \longrightarrow H^{13}CO^{+} + C^{18}O$	11.4	-5	12.5	10.3	<5
$HC^{18}O^+ + {}^{13}C^{18}O \longrightarrow H^{13}C^{18}O^+ + C^{18}O$	17.8	8	19.5	16.4	

MR2014: Mladenovic+ Roueff, AA566, A144, 2014 ; results with D reported as well and HOC+ isotopologues LGFA84: Langer et al. ApJ277, 581, 1984; *reporting HKD77*L98: Lohr, JCP108, 8012, 1998
HKD77: Henning et al. internal report MPI/PAE Astro 135, 1977
SA80: Smith+Adams, ApJ 242, 424, 1980

Revisiting fractionation reaction

Label /	Reaction		k _f *	<i>f</i> (<i>B</i> , <i>M</i>) *	ΔE *	
comment				$(cm^3 s^{-1})$		(K)
(1) A	$N^{15}N + N_2H^+$	⇒	$N^{15}NH^+ + N_2$	2.3×10^{-10}	0.5	10.3
(2) A	$N^{15}N + N_2H^+$	\rightleftharpoons	$^{15}NNH^{+} + N_{2}$	2.3×10^{-10}	0.5	2.1
(3) A	$N^{15}N + {}^{15}NNH^+$	\rightleftharpoons	$N^{15}NH^+ + N^{15}N$	4.6×10^{-10}	1	8.1
(4) B	${}^{15}N^{+} + N_{2}$	⇒	${}^{14}N^{+} + N^{15}N$	$4.8 \times 10^{-10} \times \frac{2}{2 + exp(-28.3/T)}$	2	28.3
(5) C	$^{15}N + CNC^{+}$	\rightleftharpoons	$C^{15}NC^{+} + {}^{14}N$	$3.8 \times 10^{-12} \times (\frac{T}{300})^{-1}$	1	38.1
(6) D	$^{15}N^{+} + {}^{14}NO$	\rightleftharpoons	$^{14}N^{+} + ^{15}NO$	no react	-	24.3
(7) barrier	${}^{15}N + N_2H^+$	\rightleftharpoons	$^{14}N + N^{15}NH^{+}$	no react	-	38.5
(8) barrier	$^{15}N + N_2H^+$	\rightleftharpoons	$^{14}N + ^{15}NNH^{+}$	no react	-	30.4
(9) barrier	$^{15}NNH^{+} + H$	\rightleftharpoons	$H + N^{15}NH^{+}$	no react	-	8.1
(10) barrier	$^{15}N + HCNH^+$	\rightleftharpoons	$^{14}N + HC^{15}NH^{+}$	no react	-	37.1
(11) D	$^{15}N + CN$	\rightleftharpoons	$^{14}N + C^{15}N$	upper limit : $2.0 \times 10^{-10} \times$	1	22.9
				$(T/300)^{1/6} \times \frac{1}{1+exp(-22.9/T)}$		
(12) B	$^{15}N + C_2N$	⇒	$^{14}N + C_2^{15}N$	$1.6 \times 10^{-10} \times (T/300)^{1/6} \times$	1	26.7
				$\frac{1}{1+exp(-267/T)}$		
(13) D	$^{15}N + ^{14}NO$	⇒	$^{14}N + ^{15}NO$	-	-	24.3
(14) B	$^{13}C^{+} + CO$	+	$^{12}C^{+} + ^{13}CO$	$6.6 \times 10^{-10} \times (T/300)^{-0.45}$	1	34.7
				$\times \exp(-6.5/T) \times \frac{1}{1+exp(-34.7/T)}$		
(15) A	¹³ CO + HCO ⁺	⇒	$CO + H^{13}CO^+$	$2.6 \times 10^{-10} \times (T/300)^{-0.4}$	1	17.4
(16) B	${}^{13}C^{+} + CN$	\rightleftharpoons	${}^{12}C^{+} + {}^{13}CN$	$3.82 \times 10^{-9} \times (T/300)^{-0.4}$	1	31.1
				$\times \frac{1}{1+exp(-31,1/T)}$		
(17) B	${}^{13}C + CN$	⇒	${}^{12}C + {}^{13}CN$	$3.0 \times 10^{-10} \times \frac{1}{1+exp(-31.1/T)}$	1	31.1
(18) C	¹³ C + HCN	\rightleftharpoons	${}^{12}C + H^{13}CN$	no react	-	48.4
(19) B	${}^{13}C + C_2$	⇒	${}^{12}C + {}^{13}CC$	$3.0 \times 10^{-10} \times \frac{2}{2 + exp(-26.4/T)}$	2	26.4
(19) barrier	13 CH + CO	⇒	¹³ CO + CH	no react	-	28.6

Roueff, Loison, Hickson, 2015, A&A 576, A99

Revisiting fractionation reaction

Label /	R	eactio	on	k _f *	$f(B,M)^*$	ΔE^*
comment				$(cm^3 s^{-1})$		(K)
(1) A	$N^{15}N + N_2H^+$	⇒	$N^{15}NH^+ + N_2$	2.3×10^{-10}	0.5	10.3
(2) A	$N^{15}N + N_2H^+$	⇒	${}^{15}NNH^{+} + N_{2}$	2.3×10^{-10}	0.5	2.1
(3) A	$N^{15}N + {}^{15}NNH^+$	\rightleftharpoons	$N^{15}NH^+ + N^{15}N$	4.6×10^{-10}	1	8.1
(4) B	$^{15}N^{+} + N_{2}$	⇒	${}^{14}N^{+} + N^{15}N$	$4.8 \times 10^{-10} \times \frac{2}{2 + exp(-28.3/T)}$	2	28.3
(5) C	$^{15}N + CNC^{+}$	⇒	$C^{15}NC^{+} + {}^{14}N$	$3.8 \times 10^{-12} \times (\frac{T}{300})^{-1}$	1	38.1
(6) D	$^{15}N^{+} + {}^{14}NO$	⇒	$^{14}N^{+} + ^{15}NO$	no react	-	24.3
(7) barrier	${}^{15}N + N_2H^+$	\rightleftharpoons	$^{14}N + N^{15}NH^{+}$	no react	-	38.5
(8) barrier	$^{15}N + N_2H^+$	\rightleftharpoons	$^{14}N + ^{15}NNH^{+}$	no react	-	30.4
(9) barrier	$^{15}NNH^{+} + H$	\rightleftharpoons	$H + N^{15}NH^{+}$	no react	-	8.1
(10) barrier	¹⁵ N + HCNH ⁺	\rightleftharpoons	$^{14}N + HC^{15}NH^{+}$	no react	-	37.1
(11) D	¹⁵ N + CN	\rightleftharpoons	$^{14}N + C^{15}N$	upper limit : $2.0 \times 10^{-10} \times$	1	22.9
				$(T/300)^{1/6} \times \frac{1}{1+exp(-22.9/T)}$		
(12) B	$^{15}N + C_2N$	⇒	$^{14}N + C_2^{15}N$	$1.6 \times 10^{-10} \times (T/300)^{1/6} \times$	1	26.7
				$\frac{1}{1+e^{x}p(-26.7/T)}$		
(13) D	$^{15}N + {}^{14}NO$	⇒	$^{14}N + ^{15}NO$	-	-	24.3
 (14) B	$^{13}C^{+} + CO$	7	$^{12}C^{+} + ^{13}CO$	$6.6 \times 10^{-10} \times (T/300)^{-0.45}$	1	34.7
				$\times \exp(-6.5/T) \times \frac{1}{1+e_{xp}(-34.7/T)}$		
(15) A	$^{13}CO + HCO^{+}$	\rightleftharpoons	$CO + H^{13}CO^+$	$2.6 \times 10^{-10} \times (T/300)^{-0.4}$	1	17.4
 (16) B	${}^{13}C^{+} + CN$	≓	${}^{12}C^{+} + {}^{13}CN$	$3.82 \times 10^{-9} \times (T/300)^{-0.4}$	1	31.1
				$\times \frac{1}{1+exp(-31,1/T)}$		
(17) B	${}^{13}C + CN$	⇒	${}^{12}C + {}^{13}CN$	$3.0 \times 10^{-10} \times \frac{1}{1 + exp(-31.1/T)}$	1	31.1
(18) C	¹³ C + HCN	⇒	${}^{12}C + H^{13}CN$	no react	-	48.4
(19) B	${}^{13}C + C_2$	⇒	${}^{12}C + {}^{13}CC$	$3.0 \times 10^{-10} \times \frac{2}{2 + exp(-26.4/T)}$	2	26.4
(19) barrier	¹³ CH + CO	1	¹³ CO + CH	no react	-	28.6

Type A : direct exchange

Type D : other reactive channels available

Revisiting fractionation reaction

Label /	R	eactio	on	k _f *	$f(B,M)^*$	ΔE^*
comment				$(cm^3 s^{-1})$		(K)
(1) A	$N^{15}N + N_2H^+$	1	$N^{15}NH^+ + N_2$	2.3×10^{-10}	0.5	10.3
(2) A	$N^{15}N + N_2H^+$	\rightleftharpoons	$^{15}NNH^{+} + N_{2}$	2.3×10^{-10}	0.5	2.1
 (3) A	$N^{15}N + {}^{15}NNH^+$	≓	$N^{15}NH^+ + N^{15}N$	4.6×10^{-10}	1	8.1
(4) B	${}^{15}N^{+} + N_{2}$	\rightleftharpoons	${}^{14}N^{+} + N^{15}N$	$4.8 \times 10^{-10} \times \frac{2}{2 + exp(-28.3/T)}$	2	28.3
(5) C	$^{15}N + CNC^{+}$	⇒	$C^{15}NC^{+} + {}^{14}N$	$3.8 \times 10^{-12} \times (\frac{T}{300})^{-1}$	1	38.1
(6) D	$^{15}N^{+} + {}^{14}NO$	\rightleftharpoons	$^{14}N^{+} + ^{15}NO$	no react	-	24.3
(7) barrier	${}^{15}N + N_2H^+$	\rightleftharpoons	$^{14}N + N^{15}NH^{+}$	no react	-	38.5
(8) barrier	${}^{15}N + N_2H^+$	\rightleftharpoons	$^{14}N + ^{15}NNH^{+}$	no react	-	30.4
(9) barrier	¹⁵ NNH ⁺ + H	⇒	$H + N^{15}NH^{+}$	no react	-	8.1
(10) barrier	¹⁵ N + HCNH ⁺	⇒	$^{14}N + HC^{15}NH^{+}$	no react	-	37.1
(11) D	¹⁵ N + CN	\rightleftharpoons	$^{14}N + C^{15}N$	upper limit : $2.0 \times 10^{-10} \times$	1	22.9
				$(T/300)^{1/6} \times \frac{1}{1+exp(-22.9/T)}$		
(12) B	$^{15}N + C_2N$	\rightleftharpoons	$^{14}N + C_2^{15}N$	$1.6 \times 10^{-10} \times (T/300)^{1/6} \times$	1	26.7
				$\frac{1}{1+exp(-26.7/T)}$		
(13) D	$^{15}N + {}^{14}NO$	≓	$^{14}N + ^{15}NO$	-	-	24.3
(14) B	$^{13}C^{+} + CO$	+	$^{12}C^{+} + ^{13}CO$	$6.6 \times 10^{-10} \times (T/300)^{-0.45}$	1	34.7
				$\times \exp(-6.5/T) \times \frac{1}{1+exp(-34.7/T)}$		
(15) A	$^{13}CO + HCO^{+}$	⇒	$CO + H^{13}CO^+$	$2.6 \times 10^{-10} \times (T/300)^{-0.4}$	1	17.4
(16) B	${}^{13}C^{+} + CN$	⇒	${}^{12}C^{+} + {}^{13}CN$	$3.82 \times 10^{-9} \times (T/300)^{-0.4}$	1	31.1
				$\times \frac{1}{1+exp(-31,1/T)}$		
(17) B	${}^{13}C + CN$	\rightleftharpoons	${}^{12}C + {}^{13}CN$	$3.0 \times 10^{-10} \times \frac{1}{1 + exp(-31.1/T)}$	1	31.1
(18) C	$^{13}C + HCN$	\rightleftharpoons	${}^{12}C + H^{13}CN$	no react	-	48.4
(19) B	$^{13}C + C_2$	\rightleftharpoons	$^{12}C + ^{13}CC$	$3.0 \times 10^{-10} \times \frac{2}{2 + exp(-26.4/T)}$	2	26.4
(19) barrier	13 CH + CO	\rightleftharpoons	$^{13}CO + CH$	no react	-	28.6

Type B reactions : reactions involving adduct formation and leading to direct products without isomerization

Type C reactions : reactions involving adduct formation with isomerization pathways. More work to be done

Time dependent chemical models

D, ¹³C + ¹⁵N containing molecules

307 atomic + molecular species 5440 chemical gas phase reactions o/p ratio of H₂ fixed involved in H₂D⁺ + (o/p)-H₂ \longrightarrow H₃⁺ + H and N⁺ + (o/p)-H₂ \longrightarrow NH⁺ + H

Comparison with available observations

Test the hypothesis that ¹³C containing molecules are in elemental isotopic ratios

discuss the influence of the elemental ¹⁴N / ¹⁵N ratio

Elemental abundances	TMC1 like	Prestellar core	
C/H	4.15 10 ⁻⁵	1.4 10 ⁻⁵	
O/H	6.0 1 0 ⁻⁵	2.0 10 ⁻⁵	
N / H	6.4 1 0 ⁻⁵	2.1 10 ⁻⁵	
S/H	8.0 10 ⁻⁸	8.0 10 ⁻⁸	
D/H	1.5 10 ⁻⁵	1.5 10 ⁻⁵	
¹² C / ¹³ C	68	68	
¹⁴ N/ ¹⁵ N	440 274	440 274	
Phys	sical conditio	ns	
n _H (cm ⁻³)	2 10 ⁴	2 10 ⁵	
Т (К)	10	10	
ζ (s ⁻¹) per H ₂	1.3 10 ⁻¹⁷	1.3 10 ⁻¹⁷	
o/p ratio of H ₂	10 ⁻³	10 ⁻³	
Radiation field	NO	NO	

the elemental ¹⁴N / ¹⁵N ratio

From Adande & Ziurys, 2012, ApJ 744, 194

60% increase of ¹⁵N in the last 4.6 Gyrs Hot CNO cycle; secondary production of ¹⁵N from novae outbursts ? protosolar nebula: ${}^{14}N / {}^{15}N = 440 \pm 6$ (Marty et al. 2011, Sci 332 1533, from Genesis mission)

Galactic value?

 $^{14}N / ^{15}N = 237 \pm 25$ (from absorbed HCN towards B0415 + 379) (Lucas & Liszt 1998, AA 337, 246

¹⁴N / ¹⁵N = 123.8(5.2) + 21.1(37.1) D_{GC}(kpc)
 ⇒ 290±40 at D≈7.9 kpc (Adande & Ziurys 2012)

 $^{14}N / ^{15}N = 274 \pm 18$ (Ritchey et al 2015, ApJ 804, L3, from ISM CN)

the elemental ¹⁴N / ¹⁵N ratio

From Adande & Ziurys, 2012, ApJ 744, 194

proto**solar nebula**: ${}^{14}N / {}^{15}N = 440 \pm 6$ (Marty et al. 2011, Sci 332 1533, from Genesis mission)

Galactic ISM value?

 $^{14}N / ^{15}N = 237 \pm 25$ (from absorbed HCN towards B0415 + 379) (Lucas & Liszt 1998, AA 337, 246

¹⁴N / ¹⁵N = 123.8(5.2) + 21.1(37.1) D_{GC}(kpc)
 ⇒ 290±40 at D≈7.9 kpc (Adande & Ziurys 2012)

 $^{14}N / ^{15}N = 274 \pm 18$ (Ritchey et al 2015, ApJ 804, L3, from ISM CN)

60% increase of ¹⁵N in the last 4.6 Gyrs Hot CNO cycle; secondary production of ¹⁵N from novae outbursts ? ${}^{12}C/{}^{13}C = 91.4 \pm 1.3$ from solar photosphere (Ayres et al. 2013, ApJ 765, 46); Genesis data to come? ${}^{12}C/{}^{13}C = 68$ in the local ISM 30% increase of ${}^{13}C$ since formation of the sun

Model results TMC1 conditions

Time window $\approx 10^5 - 10^6$ yrs

Observations Tiné et al. 2000, AA356, 1039 Hily-Blant et al 2013, AA557, A65 Liszt & Ziurys 2012, ApJ 747, 55

Test of the ¹⁴N/¹⁵N ratio : No clear conclusion

HNC / HN¹³C not in the isotopic ratio

Similar conclusion for HCN / H¹³CN

prestellar core conditions

Observations B1: Daniel et al. 2013, A&A560, A3 L1544: Bizzocchi 2013, A&A555, A109

Steady state conditions reached at $\approx 1 Myr$

Deuterium fractionation $\approx OK$

 $^{14}\text{N}/^{15}\text{N}$ ratio in NH_3 and NH_2D NH_2D more enriched in ^{15}N than NH_3 (slightly enhanced ZPEs from NH^+ - $^{15}\text{NH}^+$ [4.8K], ND^+ - $^{15}\text{ND}^+$ [7K])

No agreement for N_2H^+ Role of collisional excitation?

prestellar core conditions

Models with ¹⁴N/ ¹⁵N=274 in better agreement with observations

However, observations modeled with density + temperature profile

Possibility of reanalysis of the observations by introducing collisional excitation rates with H₂ (cf talk by F. Lique)

Carbon chains: another challenge for isotopic studies

Different ¹³C positions in C₂H

TMC1: $C^{13}CH / {}^{13}CCH = 1.6$ (Sakai et al. 2011, A&A 512, A31) Orion Bar PDR: $C^{13}CH / {}^{13}CCH = 1.4$ (Cuadrado et al. 2015, AA575, A82)

H + ¹³CCH => C¹³CH + H $\Delta E \approx 8.1$ K (Tarroni, private communication 2010) $\Delta E = 7.5$ K (Morgan+Fortenberry 2015, submitted to JPCA) Only at work for low T conditions

suggestion by Cuadrado et al:

 $^{13}C^+ + C_2H \rightleftharpoons C^+ + ^{13}CCH \Delta E \approx 55K$ (28.2K from Morgan+ Fortenberry 2015)

 $^{13}C^+ + C_2H \rightleftharpoons C^+ + C^{13}CH \Delta E \approx 63K$ (35.7K from Morgan+ Fortenberry 2015)

However $C^+ + C_2 H \rightarrow C_3^+ + H$. Then, according to our rule, the reaction should not take place.

Other possibilities? Under warm conditions $C_2 + H_2 \rightarrow C_2H + H$ exothermic reaction with a barrier of $\approx 1420K$ $^{13}CC + H_2 \rightarrow ^{13}CCH + H$ different barriers? (suggestion of JC Loison) $\rightarrow C^{13}CH + H$ [$\Delta^{ZPE} (C_2 - ^{13}CC) = 26.4K$]

Summary and conclusions

Careful analysis of spectroscopic properties and intermolecular potential surfaces critical to understand isotopic exchange

 $I^{15}N + N_2H^+$ exchange found unlikely (as well as $^{15}N + HCNH^+$ and $^{15}N^+ + NO$)

➡ very large observed N₂H⁺/¹⁵NNH⁺ and N₂H⁺/N¹⁵NH⁺ not reproduced by our models

■ $NH_3 / {}^{15}NH_3 > NH_2D / {}^{15}NH_2D$ may be explained by the different ZPEs involved in N⁺ + H₂ isotopic variants IF N⁺ + p-H₂ is a real endothermicity.

Interdependence of C and N chemistries.

an even slight enrichment of CO reservoir leads to a significant depletion in minor species

➡ elemental abundance of interstellar ¹⁵N? Suggestion of a ¹⁴N/¹⁵N ratio of 274 ±18 may help in the interpretation of observations.

dependence of the model results on elemental abundances, and in particular to the C/O ratio