

High Level Ab Initio Kinetics as a Tool for Astrochemistry

Stephen J. Klippenstein

Argonne National Laboratory

Phosphorus Chemistry

Julie Moses

Giant Planets (Saturn, Jupiter): 100 - 400 K; 0.1 to 2 bar Bulk is in PH₃ Bath = H_2 , CH_4 ; Substantial H, NH_3 , NH_2 , PH_3 , PH_2 , C_2H_6 PH₃ Destroyed in NH₃ Photolysis Regions by Radical Reactions $PH_3 + H = PH_2 + H_2$ $PH_3 + NH_2 = PH_2 + NH_3$ What happens to PH₂? Phosphine Photochemistry: $PH_{2} + PH_{2} + M = P_{2}H_{4} + M$ Kaye and Strobel $PH_{2} + H + M = PH_{3} + M$ Icarus, 59, 314-335 (1984) $PH_{2} + P_{2}H_{4} = P_{2}H_{3} + PH_{3}$ $PH_{2} + P_{2}H_{2} = PH_{3} + P_{2}H$ $PH_2 + NH_2 + M = NH_2PH_2 + M$ Also, what happens to P_2H_3 ? Reactions with PH₃, PH₂, NH₂, H, and P₂H₃ Extrasolar Planets: 300 – 2000 K; 1e-4 to 5 bar Conditions more varied $P_xO_vH_z$, $P_xC_vH_z$, HCP, PN

The Kinetic Model

Phenomenology

- k R+M컱P k R+M컱W1 k R+M컱W2 k W1컱W2 k W1컱P
- k W2컱P

RRKM Theory ^kd1 ^ka1 ^k12 ^k21 ^k21 ^kp1

k_{p2}

Electronic Structure Methodology

2 or Fewer Heavy Atoms

CCSD(T)/cc-pV(Q+d)Z optimizations and frequency analyses CCSD(T)/CBS(5+d,6+d) CCSD(T)/cc-pcVnZ; CBS(T,Q) CCSDT(Q)/cc-pV(D+d)Z

3 or More Heavy Atoms

Replace QZ with TZ in rovibrational analysis Sometimes CBS(QZ,5Z) instead of CBS(5Z,6Z) Somteimes no CCSDT(Q)/cc-pV(D+d)Z

Multireference as needed

CASPT2 CAS+1+2 + Davidson Correction

Phosphor	us Heats of	Formatio	$^{4}P, NH_{3} = Ref.$
Species	Delta H ₀ f(0 K) kcal/mol	Species	Delta H ₀ ^f (0 K) ATcT kcal/mol
⁴ P	75.42	⁴ N	112.42 112.47 (0.01)
³ PH	56.70	NH	85.58 85.74 (0.04)
PH_2	32.30	NH ₂	44.98 45.16 (0.03)
PH ₃	2.68	N ₂	-0.26 0.00 (0.00)
P_2	34.32	N_2H	59.89 60.33 (0.13)
$P_{2}H$	52.63	N_2H_2	49.10 49.56 (0.13)
$P_{2}H_{2}$	28.98	N_2H_3	55.86 56.29 (0.22)
PPH ₂	53.41	N_2H_4	26.55 26.22 (0.04)
³ PPH ₂	56.95	PN	42.80 PNH 50.84
$^{3}P_{2}H_{2}$	61.95	PHNH	34.11 PNH ₂ 48.67
P_2H_3	33.46	PHNH ₂	25.23 PH ₂ NH 44.47
$P_2 H_4$	7.55	NH_2PH_2	-4.44
PHPH ₃	30.54		

Related Work: Matus, Nguyen, Dixon, J. Phys. Chem. A, 111, 1726, 2007

Phosphorus Heats of Formation ⁴P, NH₃, CH₄ Ref.

Species	Delta $H_0^{f}(0 \text{ K})$	
	kcal/mol	
CP	119.98	
HCP	52.48	
H_2CP	53.81	
HCPH	4.71	
CH ₂ PH	31.27	
³ CH ₃ P	50.99	
CH ₃ P	72.92	
CH ₃ PH	28.12	
CH ₂ PH ₂	44.64	
$CH_{3}PH_{2}$	-0.30	

Combustion Thermochemistry Database CCSD(T)/TZ optimizations and Frequencies CCSD(T)/CBS from CCSD(T)/AQZ',A5Z' CCSDT(Q)/DZ Core-Valence CCSD(T)/CBS; TZ and QZ Relativistic from DKH with CI/TZ DBOC from HF/cc-pVTZ Anharmonic corrections from B3LYP/6-311++G** Heats of formation relative to H_2 , CH_4 , H_2O , NH_3 5 Heavy Atoms All 34 e⁻ or less CNOH Combustion Species

Heat of Formation Error Distribution

Ab Initio Transition State Theory (High P)

 $PH_2 + H$

High Pressure Recombination

High Pressure Recombination Rate Coefficients

Ab Initio Transition State Theory for Barrierless Reactions Harding, Georgievskii, SJK Direct Variable

Direct Variable Reaction Coordinate TST

- Fully Coupled Anharmonic Treatment
- CASPT2 MultiReference
 Electronic Structure
- Dynamical Corrections
- Predictions Accurate to About 20%

Radical-Radical Reactions

 $CH_3 + C_2H_5 -> C_3H_8$

 $C_{3}H_{8} \rightarrow CH_{3} + C_{2}H_{5}$

 $PH_2 + PH_2$

$PH_2 + PH_2$

Total Reaction Rate

Branching Fraction P=0.5 bar

 $PH_2 + NH_2$

 $PH_2 + NH_2$

Total Reaction Rate

Branching Fraction P=0.5 bar

OH + H High Pressure Recombination

OH + H Pressure Dependence

H + OH Radiative Association

Pressure Dependence: Comparison with Expt

A Priori Pressure Dependence: Coupling Trajectory Simulations with the Two Dimensional Master Equation

Jasper, Pelzer, Miller, Kamarchik, Harding, Klippenstein, Science, 346, 1212 (2014).

Jasper – calculate $\langle \Delta E_{down} \rangle$, $\langle \Delta J_{down} \rangle$, $\langle \Delta E_{down}^2 \rangle$, $\langle \Delta J_{down}^2 \rangle$, $\langle \Delta E_{down} \rangle$; all as a function of J

Take simple model for P(E,J;E',J') P ~ exp[- $(\Delta \underline{E}_d / \alpha(J'))^{\epsilon_-E}$] * exp[- $(\Delta \underline{J}_d / \gamma(J'))^{\epsilon_-J}$] Adjust parameters [$\alpha(J')$, $\gamma(J')$, ϵ_E , ϵ_J , Z_{LJ}] to reproduce the moments from trajectories Employ model form in 2-Dimensional Master Equation

S. J. Jeffrey, K. E. Gates, S. C. Smith, J. Phys. Chem. 100, 7090 (1996) – Solution to 2D Master Equation J. R. Barker, R. E. Weston, J. Phys. Chem. A, 114, 10619 (2010) Represent full P(E,J;E',J') as sum of basis functions

C₂H₃ Reaction System

CH₃ + **H** -> **CH**₄

H + O₂ (+M) -> HO₂ (+M)

Verdicchio, Jasper, Pelzer, Georgievskii, Klippenstein

Completely A Priori Predictions Agree with Experimental Data to Within about 20% Over ~5 Decades of Pressure!

H₂O is only 7 times more efficient than Ar

Conclusions

- Theoretical kinetics provides a valuable tool for mechanism development
- For small molecules barrier heights accurate to about 0.4 kcal/ mol (2σ) are readily obtained
- Kinetic accuracy (factor of two) is readily attainable for many reactions
- Coupling trajectory simulations of E,J collision kernels with 2D master equations provides accurate a priori predictions of pressure dependent kinetics

Funding NASA US Department of Energy

