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Interaction astrochemistry - molecular physics

- Spectroscopy
Determination of present species in ISM

Benchmark molecule to estimate
temperature of observed region

-_Gas phase kinetics

Complex kinetic models to reproduce
species abundance observations

-> information on physical properties
of the region

- which chemical complexity can be
achieve in ISM ?
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Carbon chemistry diagram

- Need rate constants




atom-diatom reactive collisions :
first chemical reactions

ions-H2 reaction

— reaction with barrier, generally endothermic
- light hydrides recently detected by Herschel

-~ H, most abundant molecule

— rovibrational excitation may enhance reactivity
— experimental results available - benchmark

C*+H,»>CH*+H S*+H,>SH*+H




Theoretical approach
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Solve Schrodinger equation:  Hpo W = EW
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Method

Born-Oppenheimer approximation :

M>m - YR, r)=YR)y(rR)

— The nuclei move in a electrostatic potential due to electrons

—~ 2 steps to treat reaction :

- calculate the electronic Potential Energy Surface (PES)

- calculate the reaction dynamics using the PES



Gravitational potential energy curve
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Reaction dynamics

Quantum approach
— Time Dependant Wave Packet
- Exact calculations (require a lot of cpu resource + time)
- for a given rovibrational state (v,j), computes all (v',}') of the S-matrix
Classical approach
— Quasi Classical Trajectories

- Approximate calculations (cheap calculation, fast if potential is fast)
- initial conditions can follow a thermal distribution



C*+H,

Surprising observation (Hershel) of

“hot” CH* in some regions that - PES from Stoecklin & Halvick
cannot be simulated by standard ,

heating mechanism : - stable CH," well (~-4.5 eV)
— chemical pumping ? T-geometry

L, " no barrier to reach the well

2
1.H 1" - CH*+H channel endothermic
+0.36eV for v=0 - open when v=1

L=

L]
—
T

- need state to state (v,j—V',}') rate
constant to understand
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- use of time dependant
wavepaguet method (quantum)
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Figure 1. Minimum energy path for the C*+Hs reaction obtained vsing the PES
of Stoecklin & Halvick (2005).



Reaction Cross section (Az)
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- fast rate constant
(>10*°cm?3/s)

- product vibrational
distribution exhibits
statistical behavior.



L C*+H,
37 . . . .
ap | B 0
39 | t - reduce discrepancy
40 | ® with observation
~ - (observation still
<2 AT “hotter”)
Z 42 ¢ o — higher rotational
L 4al m states of H2 have to be
= P explicitly taken in
. account.
45T — coupling with
-46 | n = excited el. state ??
-47 ' : : = _ _
0 200 400 600 800 1000 - chemical pumping
E; (K) important in heating

CH+ rotation diagram in the Orion Bar PDR predicted by the
MADEX excitation code. (1)inelastic collision heating,

(2)chemical pumping (Boltzman dist.) and (3) state-to-state.
Fji is the line flux in (W m=) and vj i is the frequency of the

transition in THz, and gj is the statistical weight of

the upper level |.

mechanism

- state-to-state effect
increase with T



-SH* detected in 2010 (Hershel)
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S*+H,

— contribution of S*+H,?

—

—

0

. 5

6

4 4

2

0 3

. 2

8

8 1

4

2 . o, \ - 0

0 # J0 ll\
0246 8102 46 810 -1

r/ bohr r/ bohr

Contour plot (Jacobi) for 6=02. 302,602 & 9092

- endothermic reaction (+0.89 eV)
for v=0 - open for v=2

- no well in quartet state

— need vibrational specific
thermal rate constants

- use of QCT method
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S*+H,
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- high rate constant v>1
(~ 1011-1019)

increase of several
order of magnitude
compared for v=0,1

- rate constants lower
than for C*

- no well

— more endothermic




Abundance model
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Model for the Orion Bar of the relative abundances of SH+, S+, CH+,
C+, H2(v >0), and H2(v > 1) as a function of the depth in the cloud

(expressed in visual extinction AV)

- S*+H, reaction important
for production of SH*

— relative increase of the
predicted abundances of
SH*and CH* (5 and 3 order
of magnitude respectively)

- concentration of CH+ and
SH+ still underestimated
compared to observations

— effects of spin-orbit and
non-adiabatic couplings ?

- co_ntribution from other
reactions ?



Conclusion

- Prolific interaction between astrophysics and molecular physics

- rovibrational excitation of H, may enhance greatly reactivity

- thermal rate constants cannot always explain observations :
vibrational specific or state to state rate constants may be required

— any way to include them in KIDA ?
- standard equation often fails to fit rates in wide temperature range

— any way to upload directly ascii file with numerical data ?
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