

High-temperature chemistry and photochemistry for hot exoplanets atmospheres

Olivia VENOT

Katholieke Universiteit Leuven

olivia.venot@ster.kuleuven.be

source : <u>exoplanet.eu</u> (29 April 2015)

What is their history?

How do they form?

→ What is the composition of their atmosphere?

-> What are the elemental ratios?

Are they the same than the host star?

1915 exoplanets

source : <u>exoplanet.eu</u> (29 April 2015)

source : <u>exoplanet.eu</u> (29 April 2015)

source : exoplanet.eu (29 April 2015)

Thermochemical equilibrium: depends on P, T, elementary abundances

Thermochemical equilibrium: depends on P, T, elementary abundances I. Photodissociations

Thermochemical equilibrium: depends on P, T, elementary abundances I. Photodissociations

2. Horizontal circulation (winds)

Thermochemical equilibrium: depends on P, T, elementary abundances I. Photodissociations

2. Horizontal circulation (winds)

3. Vertical mixing (convection, turbulence)

Thermochemical equilibrium: depends on P, T, elementary abundances I. Photodissociations

2. Horizontal circulation (winds)

3. Vertical mixing (convection, turbulence)

interpretation spectroscopy :need kinetic models

ID Model: kinetics, vertical mixing and photodissociations

column of atmosphere with PT profile ~100 levels chemical reactions at (P,T)

+ vertical mixing
+ UV flux → photodissociations

For each compound and for each level, resolution of the continuity equation:

ID Model: kinetics, vertical mixing and photodissociations

column of atmosphere with PT profile ~100 levels chemical reactions at (P,T)

+ vertical mixing
+ UV flux → photodissociations

For each compound and for each level, resolution of the continuity equation:

ID Model: kinetics, vertical mixing and photodissociations

column of atmosphere with PT profile ~100 levels chemical reactions at (P,T)

+ vertical mixing
+ UV flux → photodissociations

For each compound and for each level, resolution of the continuity equation:

Development of the model: Chemistry at high temperature

• Chemical networks totally new in planetology:

- interdisciplinary collaboration specialist of combustion (LRGP, Nancy)
- schemes validated experimentally as wholes large ranges P (10⁻³-10² bar) T (300-2500 K)
- 1920 reactions, 105 species (C,H,O,N), C₂ Venot et al. 2012, A&A,
- 4002 reactions, 240 species (C,H,O,N), C₆ Venot et al. 2015, A&A
- available for the community on KIDA (http://kida.obs.u-bordeauxI.fr/)

OD Model : kinetic evolution

- - - *-* thermo equilibrium — kinetic model

- - - *-* thermo equilibrium — kinetic model

- - - [,] thermo equilibrium —— kinetic model

--- thermo equilibrium — kinetic model

Venot et al. 2015, A&A

New chemical scheme

- strong chemical scheme indispensable
- C₂ chemical scheme might be insufficient for high C/O ratios (>1)
- ➡ C₆ chemical scheme
- 3 PT profiles with model of Parmentier & Guillot (2014) Venot et al. 2015, A&A

- slight increase of hydrocarbons amount (CH4, CO,...)

amount (CH₄, CO,...)

 $C_2 \text{ vs } C_6$: - C_2H_2 , CO are less abundant with C_6 scheme

 $CO + 2 C_2H_2 + 2 H_2 + C \rightarrow CC_6H_8 + O(^{3}P)$

No UV importance of With UV flux photodissociations flux

Effect of photodissociations

HD189733b, HD209458b (hot Jupiters), and GJ436b (warm Neptune)

Effect of photodissociations

HD189733b, HD209458b (hot Jupiters), and GJ436b (warm Neptune)

Effect of photodissociations

HD189733b, HD209458b (hot Jupiters), and GJ436b (warm Neptune)

Absorption cross sections

 $\sigma(\lambda,T)$: capacity to absorb flux

Absorption cross sections

 $\sigma(\lambda,T)$: capacity to absorb flux

Absorption cross sections

Consequences on atmosphere

warm Neptune orbiting around a F star $T_{atm} \approx 500$ K (P < 100 mbar)

 NH_3

but...

 $NH_3 \rightarrow NH_2 + H$ 10-17 absorption cross section (cm²) 10-18 10-19 I 0⁻²⁰ 10-21 I 0⁻²²

work in progress

Conclusions & Perspectives

- 2 chemical schemes valid at high temperature
- warm exoplanets, brown dwarfs (Tremblin et al. 2015), deep atmosphere of giant planets (Cavalié et al. 2014)
- next improvement: addition of sulfur species/reactions
- For photolysis : important need of data at T > 300K !
- Dependency of CO₂ VUV absorption cross section measured between 150 and 800 K (Venot et al. 2013, Venot et al. in prep)
- May 2015: NH₃, C₂H₂ at Signet and Si
- And more in the coming years....(HCN, C₂H₄, CO,... ask for specific request...)

Conclusions & Perspectives

- 2 chemical schemes valid at high temperature
- warm exoplanets, brown dwarfs (Tremblin et al. 2015), deep atmosphere of giant planets (Cavalié et al. 2014)
- next improvement: addition of sulfur species/reactions
- For photolysis : important need of data at T > 300K !
- Dependency of CO₂ VUV absorption cross section measured between 150 and 800 K (Venot et al. 2013, Venot et al. in prep)
- May 2015: NH₃, C₂H₂ at Signet and Signet Room and Structure of S
- And more in the coming years....(HCN, C₂H₄, CO,... ask for specific request...)

Thank you for your attention...