

Ice chemistry:

Formation of complex organic molecules in interstellar ice

Patrice Theulé, F. Duvernay, G. Danger, , F. Borget , I. Couturier, N. Pietri J.B. Bossa, J. Noble, , N. Belles-Limeul, F. Mispelaer, V. Vinogradoff, A. Toumi A. Fresneau, T. Butscher and T. Chiavassa

> Physics of Ionic and Molecular Interactions laboratory Aix-Marseille University, CNRS UMR 7345, France

KIDA workshop on interstellar and planetary atmosphere chemistry

5, 6 and 7 May 2015, Paris

1. Molecular complexity and solid-state chemistry

- 2. Formation of complex molecules
- 3. Dynamics of COMs formation

The solid-state formation of COM

Modeling ice chemistry

a bottom-up (non-directed) approach , isolating each reaction and each process

Laboratory astrochemistry

(the RING experimental set-up)

1. Molecular complexity and solid-state chemistry

2. Formation of complex molecules

- Thermal formation of complex molecules
- Photochemistry
- Detection of COMS in the ISM
- 3. Dynamics of COMs formation

The initial molecules

NGC 7538 ISO spectrum

HCOOHIoppolo et al. (2011) CO_2 Oba et al. (2010), Ioppolo et al. (2011b), Noble et al. (2011) $CH_3CHO \rightarrow C_2H_5OH$ (and CH_4 and CH_3OH) Bisschop et al. (2007)

Inventory of the thermal reactions in the ice mantle

G0 molecules	H ₂ O	СО	CO ₂	NH ₃	CH ₄	OCS	H ₂ CO	CH₃OH	НСООН	HNCO	
H ₂ O											
СО											
CO2											
NH ₃			?								
CH ₄											
OCS											
H ₂ CO											
CH₃OH											
нсоон											
HNCO											
•••											

Inventory of the thermal reactions in the ice mantle

G0 molecules	H ₂ O	СО	CO ₂	NH ₃	CH ₄	OCS	H ₂ CO	CH₃OH	НСООН	HNCO	
H ₂ O											
СО											
CO2											
NH ₃			?								
CH ₄											
OCS											
H ₂ CO											
CH₃OH											
нсоон											
HNCO											
•••											

absorbance

The NH₃ + CO₂ thermal solid-state reaction

thermally produced species above 80K :

first-generation molecules G1

 \blacktriangleright C = ammonium carbamate (NH₄⁺ NH₂COO⁻)

 \blacktriangleright D = carbamic acid (NH₂COOH)

The NH₃ + CO₂ thermal solid-state reaction

J.B. Bossa, F. Duvernay, P. Theulé, F. Borget, T. Chiavassa, Chem. Phys.354(3), 211, 2008 Bossa, J.B.; Theule, P.; Duvernay, F.; Borget, F.; Chiavassa, T. *A&A*, 2008, *492*, 719

Inventory of the thermal reactions in the ice mantle

G0 molecules	H ₂ O	СО	CO ₂	NH ₃	CH ₄	OCS	H ₂ CO	CH₃OH	нсоон	HNCO	
H ₂ O											
СО											
CO ₂											
NH ₃			NH₄⁺NH₂COO-								
CH ₄											
OCS											
H ₂ CO											
CH ₃ OH											
НСООН											
HNCO											

Inventory of the thermal reactions in the ice mantle

G0 molecules	H ₂ O	СО	CO ₂	NH ₃	CH ₄	OCS	H ₂ CO	CH₃OH	нсоон	HNCO	
H ₂ O											
СО											
CO2											
NH ₃							?				
CH ₄											
OCS											
H ₂ CO											
CH₃OH											
нсоон											
HNCO											

Thermal reaction in a H₂CO:NH₃:H₂O ice

H₂CO

aminomethanol

Bossa, J. et al. ApJ 2009, 707, 1524

alpha-aminoethanol (chiral)

Duvernay et al., A&A, 2010 (523), 79

Inventory of the thermal reactions in the ice mantle

G0 molecules	H ₂ O	СО	CO ₂	NH ₃	CH ₄	OCS	H ₂ CO	CH₃OH	НСООН	HCN	
H ₂ O											
СО											
CO2											
NH ₃											
CH ₄											
OCS											
H ₂ CO										?	
CH ₃ OH											
нсоон											
HNCO											

The H₂CO + HCN thermal solid-state reaction

$HCN + H_2O$

$HCN + H_2CO + H_2O$ (1:1:1)

hydroxyacetonitrile HOCH₂CN

Danger et al., 2013

Atomistic interpretation of hydroxyacetonitrile formation

NGC 7538 ISO spectrum

OCN⁻ formation and destruction

acid-base thermal reactions:

Formation

$HNCO + NH_3 \rightarrow OCN^- + NH_4^+$

Demyk et al. A&A 1998, Raunier et al., JCP 2004, Van Broekhuizen et al., A&A 2004, Mispelaer A&A 2012

 $HNCO + H_2O \rightarrow OCN^- + H_3O^+$ Raunier S. et al., JCP, 2003, Theule A&A 2011 Destruction $OCN^{-} + H_3O^{+} \rightarrow (HOCN) + H_2O$

G0 molecules	H ₂ O	СО	CO ₂	NH ₃	CH ₄	OCS	H ₂ CO	CH₃OH	нсоон	HNCO	
H ₂ O										H ₃ O ⁺ OCN ⁻	
СО											
CO2											
NH ₃											
CH ₄											
OCS											
H ₂ CO											
CH ₃ OH											
нсоон											
HNCO											

G0 molecules	H ₂ O	СО	CO2	NH ₃	CH ₄	OCS	H ₂ CO	CH₃OH	нсоон	HNCO	
H ₂ O											
СО											
CO2											
NH ₃ —										► NH ₄ ⁺ OCN ⁻	
CH ₄											
OCS											
H ₂ CO											
CH ₃ OH											
нсоон											
HNCO											

G0 molecules	H ₂ O	СО	CO ₂	NH ₃	CH ₄	OCS	H ₂ CO	CH₃OH	нсоон	HCN	
H ₂ O											
СО											
CO2											
NH ₃ —										► NH ₄ ⁺ CN ⁻	
CH ₄											
OCS											
H ₂ CO											
CH ₃ OH											
нсоон											
HNCO											

G0 molecules	H ₂ O	со	CO2	NH ₃	CH ₄	OCS	H ₂ CO	CH ₃ OH	нсоон	HNCO	
H ₂ O							HOCH ₂ OH			H ₃ O⁺OCN⁻	
СО											
CO2				NH ₂ COOH							
NH ₃			NH ₂ COOH				NH ₂ CH ₂ OH		NH4 ⁺ HCOO ⁻	NH₄⁺OCN⁻	
CH ₄											
OCS											
H ₂ CO	HOCH ₂ OH			NH ₂ CH ₂ OH			РОМ				
CH₃OH											
нсоон				NH₄ ⁺ HCOO ⁻							
HNCO	H ₃ O⁺OCN [¯]			NH₄⁺OCN⁻							

Toward more and more complexity: the organic residue

Condensation reactions in the ice mantle

H₂CO : H₂O thermal reactivity

 $H_2CO: H_2O$ mixture (1:14)

methanediol HOCH₂OH

Condensation reactions in the ice mantle

1. Molecular complexity and solid-state chemistry

2. Formation of complex molecules

- Thermal formation of complex molecules
- Photochemistry
- Detection of COMS in the ISM
- 3. Dynamics of COMs formation
Toward more complex molecules: ice photochemistry

photons flux

The NH₃ + CO₂ thermal solid-state reaction

Bossa, J.B.; Duvernay, F.; Theule, P.; Borget, F.; d'Hendecourt, L.; Chiavassa, T. *A&AS*2009, *506*, 601-608. 1. Molecular complexity and solid-state chemistry

2. Formation of complex molecules

- Thermal formation of complex molecules
- Photochemistry
- Detection of COMS in the ISM
- 3. Dynamics of COMs formation

Ice formed COMs detection

complexity

Ice formed COMs detection

NGC 7538 ISO spectrum

Ice formed COMs detection

Prof. Stephan Schlemmer Christian Endres, Marius Hermann, JB Bossa

formation of COMs in the ice

+

Chirped pulse Fourier transform microwave spectrometer

Ice formed molecules detection

NH₃ ice TPD

high-resolution and sensitivity

- 1. Molecular complexity and solid-state chemistry
- 2. Formation of complex molecules
- 3. Dynamics of COMs formation
 - diffusion limited reactivity
 - reaction rate constants
 - diffusion coefficients
 - desorption and trapping

the diffusion-reaction equation

$$\frac{\partial n_A}{\partial t} - D(T) \times \nabla^2 n_A + k(T) \times n_A n_B = 0$$

- 1. Molecular complexity and solid-state chemistry
- 2. Thermal formation of complex molecules
- 3. Dynamics of COMs formation
 - diffusion limited reactivity
 - reaction rate constants
 - diffusion coefficients
 - desorption and trapping

$$\frac{\partial n_A}{\partial t} - D(T) \times \nabla^2 n_A + k(T) \times n_A n_B = 0$$

 $A = NH_3$

 $B = CO_2$

$$\frac{dN_i}{dt} = -k_{ij}(T_{const}) N_i^{\alpha} N_j^{\beta}$$

 α , β partial orders $\alpha + \beta$ total order

k_{ij} (T_{const})

 \rightarrow

The temperature dependence of the reaction rate constant

$$k(T) = A e^{-\frac{E_a}{k_B T}}$$
 $E_a = 5.1 \pm 1.6 \ kJ.mol^{-1}$ (613 K, 53 meV)
 $A = 0.09^{+1.1}_{-0.08} s^{-1}$

Noble et al., PCCP 2014

$$HNCO + NH_3 \rightarrow OCN^- + NH_4^+$$
 Mispelaer et al., A&A 201

 $k(T) = k_0 * e^{-\frac{E_a}{k_B T}} k_0 = 0.0035 \pm 0.0015(s^{-1}) E_a = 0.4 \pm 0.1 \ kJ \ mol^{-1}$ (36 K)

pre-exponentiel coefficient

reaciants				products				ν ₀ , E _a , [T interval, K]		
acid-base reactions										
generation 0		generation 0		generation 1					\square	
H ₂ O	+	HNCO	+	$H_3 O^+ OCN^-$					$(3 \ 10^8, 26$	[110K-130K]
NH ₃	+	HCOOH	\rightarrow	NH ⁺ HCOO ⁻					· · ·	
NH ₃	+	HNCO	-	$NH_4^+ OCN^-$					$(4 \ 10^{-3}, 0$.4) [8K-40K]
NH ₃	+	HCN	-	NH ⁺ _i CN ⁻					$(1.6 \ 10^{-2})$	2.7)[60K-105K]
generation 1		generation 0		generation 2						
NH ₂ COOH	+	NH ₃	\rightarrow	$NH_4^+ NH_2 COO^-$						
CH ₃ NHCOOH	+	CH ₃ NH ₂	-+	CH ₃ NR ₃ ⁺ CH ₃ NHCOO ⁻						
nucleophilic additions										
generation 0		generation 0		generation 1						
CO ₂	+	NH ₃	+	NH ₂ COOH						
CO2	+	CH ₃ NH ₂	\rightarrow	CH ₃ NHCOOH						
H ₂ CO	+	H ₂ O	+	HOCH ₂ OH						
H ₂ CO	+	NH ₃	-+	$NH_2 CH_2 OH$					$(5 \ 10^{-2}, 4$.5)[80K-100K]
H ₂ CO	+	CH ₃ NH ₂	-+	CH ₃ NIICH ₂ OH					$(2 \ 10^{-2}, 1$	1)[30K-120K]
CH ₃ CHO	+	NH ₃	\rightarrow	NH ₂ CH(CH ₃)OH					$(7 \ 10^{10}, 3$)[115K-125K]
generation 1		generation 0		generation 2						
NH ⁺ ₆ ON ⁻	+	CH ₂ NH	\rightarrow	NH2CH2CN						
NH ⁺ ₄ CN ⁻	+	H_2CO	-+	$HOCH_2CN$	+	NH_3			$(2.8 \ 10^{-1})$	3.8)[50K-130K]
elimination reaction										
generation 1										
NH ₂ CH ₂ OH	+	HCOOH	-+	$CH_2 = NH$	+	H_2O	+	HCOOH		
$NH_2CH(CH_3)OH$	+	HCOOH	+	$CH_3 CH=NH$	+	H_2O	+	HCOOH		
CH3NHCH2OH	+	HCOOH	+	CH ₂ =NCH ₃	+	H ₂ O	+	HCOOH		

Theule et al., Adv. Space Res. 2013

The pre-exponential factor issue

the influence of quantum tunneling

credit: Alexandre Faure

thermal (Arrhenius) regime

50 K

The pre-exponential factor issue

usefullness of quantum calculations to understand the microphysics

Laboratory data into model

 $n_d \approx 1.33 \ 10^{-12} \times N_H cm^{-3}$

grain density

 $N_s \approx 10^6 grain^{-1}$

nb of sites on a grain

$$k_{chem} = \exp\left(-\frac{2a}{\hbar}\sqrt{2\mu E_a}\right) = 3.3 \ 10^{-2}$$
 [Ø] μ : masse réduite
a= 1 Å

Laboratory data into model

 $HNCO + NH_3 \rightarrow OCN^- + NH_4^+$

in HNCO: NH₃: H₂O

- problem of formalism
- temperature dependence of the reactions (tunneling effect not appropriated for all reactions)
- problem of the yield

M. Faure et al., Icarus, submitted + A. Faure A&A submitted

 $H_2O + CD_3OD \rightarrow CHD_2OD/CH_2DOD/CH_3OD/ CHD_2OH/CH_2DOH/CH_3OH + HOD/D_2O$

 $H_2O + CD_3ND_2 \rightarrow CH_2DND_2, CHD_2ND_2, CH_3ND_2/...$

 $D_2O + HCN \rightarrow HDO + DCN$

example: a H₂O :CD₃ND₂ mixture at T constant

D/H exchanges between -OH and -NH₂/NH functional groups

Photochemistry rate constants: photo- production/destruction of COMs and photo equilibrium

 $\sigma \sim 10^{-19} \text{ cm}^2$

in the gas phase:

$$AB \xrightarrow{k_{photo}} A + B \qquad k_{photo} = \int \Phi(\nu) * \sigma(\nu) d\nu \qquad \sigma_{gas} \sim 10^{-17} \, \text{cm}^2$$

 σ_{solid} ~ 10⁻¹⁹ cm²

the « cage effect »

- 1. Molecular complexity and solid-state chemistry
- 2. Thermal formation of complex molecules
- 3. Dynamics of COMs formation
 - diffusion limited reactivity
 - reaction rate constants
 - diffusion coefficients
 - desorption and trapping

$$\frac{\partial n_A}{\partial t} - D(T) \times \nabla^2 n_A + k \nabla \times n_A n_B = 0$$

 $X = CO, HNCO, H_2CO \text{ or } NH_3$

+ molecular dynamics calculations in low-density amorphous ice (LDA)

P. Ghesquiere, T. Mineva, D. Talbi

Diffusion coefficients of molecules in amorphous ice

good agreement experiment and MD calculations

surface diffusion faster than volume diffusion

correlation with water self-diffusion for both hydrogen bonded and non hydrogen bonded molecules

Diffusion coefficients of molecules in amorphous ice

temperature dependence of the diffusion coefficient

 $D(T) = D_0 e^{-\frac{E_d}{k_B T}}$

System	D ₀ (cm ² .s ⁻¹)	E _a (kJ.mol ⁻ⁱ)	E _* (kJ.mol ⁻¹) with D ₀ = 0.22 cm ² .s ⁻¹	Edes ((kJ.mol ⁻¹)
H ₂ O Self-D LDA	(7 ± 1) e-06	15 ± 5	24.9 ± 2.9	46.6 [44]
H ₂ O Self-D Ih	(1 ± 0.2) e-10	9 ± 5		
NH ₃ LDA	(3 ± 0.5) e-05	17 ± 5	25.4 ± 1.0	25 [61]
NH ₃ Ih	(7 ± 2) e-10	9 ± 5		
CO ₂	(3 ± 0.5) e-10	3 ± 3	25.0 ± 2.4	22.4 [61]
CO	(2 ± 0.5) e-09	8 ± 5	27.2 ± 2.1	9.8 [61][62]
H ₂ CO	(1.7 ± 0.5) e-08	9 ± 5	25.0 ± 1.7	27 [57]
H ₂ O	(9 ± 1) e-07	13 ± 5	25.3 ± 1.3	46.6 [44]

diffusion of small molecules probably driven by the water self-diffusion in the ice

- 1. Molecular complexity and solid-state chemistry
- 2. Thermal formation of complex molecules
- 3. Dynamics of COMs formation
 - diffusion limited reactivity
 - reaction rate constants
 - diffusion coefficients
 - diffusion and trapping

Diffusion and trapping

no trapping

trapping important for « mild » chemistry and COM formation (role of the water solvent)

Conclusion and perspectives

Iaboratory experiments and theoretical studies enable to understand solid-state chemistry

important to quantify each competing process (activation energies, cross sections,...)

to understand the dynamics

challenge to input the microphysics in a gas-grain code with the required level of details (and not too much) Thanks

Funding : PCMI, EPOV, PNP, CNES, ANR, PACA, Marseille

Fabien Borget

Nathalie Pietri

Aurelien Fresneau PhD student

Isabelle Couturier

Jean-Baptiste Bossa former PhD student

Abdelkrim Toumi PhD student

Grégoire Danger

Jennifer Noble former post-doc

Florent Mispelaer former PhD student

Fabrice Duvernay

Ninette Belles-Limeul post-doct

Vassilissa Vinogradoff former PhD student

Thank you for your attention
The pre-exponential factor issue

// desorption

see M. Bertin's talk and Misha Doronin's poster