Diffusion and reaction on surfaces: crucial aspects

Minissale Marco

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Paris, KIDA 7th May 2015

Most of the (molecular) information is carried by gas phase

HIFI Spectrum of Water and Organics in the Orion Nebula

© ESA, HEXOS and the HIFI consortium E. Bergin

Grains act as catalysts

Chemistry on dust grains works when gas phase does not!

From gas to solid phase

In collision theory, the rate $k_r = \rho A_r (\mathcal{N}_a, \mathcal{N}_b, \sigma, v_{rel}) e^{(-E_r/RT)}$ constant is: Steric factor **Energy requirement Collision frequency**

From gas to solid phase

Eley-Rideal

 $k_r = \rho A_r e^{(-E_r/RT_{system})}$

 $A_r(f_a, S_b, \sigma)$

Langmuir-Hinshelwood

 $A_r(S_a, S_b, k_{da, b}, \sigma)$

 $k_d = A_d e^{(-E_d/RT_{system})}$

Two steps

Diffusion-controlled reaction

Diffusion-controlled reaction

If $E_r << E_d$ or if the escape of molecules from the AB cage is difficult

The kinetics are dominated by k_d, and thus by the activation energy of diffusion.

Activation-controlled reaction

Activation-controlled reaction

 $k_r \ll k_d$

If $E_r >> E_d$

The kinetics are dominated by k_r, and thus by the activation energy of reaction.

Diffusion supporting reaction

No simplification can be made to determine $k_r \approx k_d$

1) Diffusion-controlled

 $E_r \rightarrow 0 K$ $E_r / E_d << 1$

 $E_d \rightarrow 0 K$

 $E_{r}/E_{d} >> 1$

2) Activation-controlled

3) Diffusion supporting reaction $E_r/E_d \approx 1$

Diffusioncontrolled reaction

 $O+O and O+O_2$

No O atoms desorption

 O_3 amount increases, O_2 reaches a steady state

Oxygen diffusion

Diffusioncontrolled reaction

$O+O and O+O_2$

 $O'(t) = 2\tau\phi_O(1 - 2O - O_2) - (1 - \tau)\phi_O O$ ER $O_2'(t) = (1 - \tau)\phi_O(1 - O) - 2\tau\phi_O O_2 + 2\tau\phi_O O$ $O'_{3}(t) = (1-\tau)\phi_{O}O + 2\tau\phi_{O}O_{2}$ $E_r < 150 \text{ K}$ $O'(t) = -4kOO - kOO_2$ $800 \text{ K} > \text{E}_{\text{d}} > 500 \text{ K}$ $O_2'(t) = 2kOO - kOO_2$ IΗ $E_{r}/E_{d} << 1$ $O'_3(t) = +kOO_2$

> Minissale et al., JCP 2014 Congiu et al., FD 2014

Activationcontrolled reaction

0+0₃

No O atoms desorption

O₃ amount increases, O₂ reaches a steady state

Activationcontrolled reaction

0+0₃

O+O₃ barrier more than 2300 K Mallard et al. 1997

Diffusion Supporting Reaction H_2CO+O CO_2+H_2 In gas phase H_2CO+O Chang & Barker (1979) Wellman et al.(1991) H_2O+CO

Barrier= 1560 K

We present the first experimental study on solid phase for H_2CO+O

Minissale et al, A&A 2015

Minissale et al, A&A 2015

On ASW

H₂CO+O Chemical network

 $H_2CO+O \rightarrow ...$...**>**...

Diffusion Supporting Reaction

H₂CO+O Chemical network

$H_2CO+O \rightarrow (OH+HCO)_{cage}$ $(OH+HCO)_{cage} \rightarrow HCOOH^*$

Minissale et al, A&A 2015

On ASW

26

Surface chemistry studies

Experimentally

- Kinetics of different reactions
- Products

- Disentangle Langmuir-Hinshelwood
 & Eley-Rideal mechanisms
- Estimate of diffusion and reaction barriers (model dependent)

Surface chemistry on KIDA

Reaction	Barrier	Surface
0+0 0+02 0+03	o K o K >2000 K	Water ice, Oxidized HOPG, Silicate
CO+O H2CO+O	700 K 335 K	Water ice, oxidized HOPG
CO+H H2CO+H CH3OH+H	1200 K 700-800 K >2000 K	oxidized HOPG
Ox+H		Water ice, oxidized HOPG Silicate
NOx+Ox NOx+H NOx+N	•••	

Rescale barrier to your model

Rate1=- $S_a S_b A_r \exp(-E_{d-a}/T) P_{reac}$

• $P_{reac} = exp(-E_{r2}/T)$ Supporting

Competition

• $P_{reac} = \exp(-E_{r1}/T)/(\exp(-E_{r1}/T) + \exp(-E_{d-a}/T))$

AB*

So exp(- E_{r1}/T)/(exp(- E_{r1}/T)+exp(- E_{d-a}/T)) =exp(- E_{r2}/T)

I want to thanks my colleagues: F. Dulieu, S. Cazaux, E. Congiu, S. Baoche, H. Chaabouni, V. Pirronello, G. Manicò, A. Moudens and so on

Thank you for your attention