Monte Carlo simulation to investigate the formation of various deuterated species on interstellar dusts

Indian Centre for Space Physics

Kinetic Database for Astrochemistry, 5-7th May, Paris, France

Plan of this presentation

Introduction and basic process on interstellar dust

 \Box Formation of most simplest molecule, H_2

Formation of complex molecules on interstellar dust

Deuterium enrichment of grain mantle

Conclude

Cartoon diagram of the interstellar process

Gibb et al. 2000, Schutte et al. 1999

Basic physical process on interstellar grains

Accretion $F_x = \alpha \sigma v N_x N_d$ Diffusion $t_{hop} = v_0^{-1} \exp(E_b/KT_d) \sec(t_{tun} = v_0^{-1}[(4\pi a/h)(2mE_b)^{1/2}] \sec(t_{tun})$

Reaction

Various approaches to handle grain chemistry

Deterministic approach

• Define an effective rate coefficient based on the mobility and mean free path before interaction.

Need to solve a set of coupled ODEs.

• Much faster and would easily be coupled with the large gas phase network but results are acceptable in some regime of simulation.

• Rate equation, Master equation methods belongs to this category.

Stochastic Approach

All the possibilities are modeled with the random number generators.

Accretion

Reaction

Evaporation

Monte carlo method belongs to this category. Very slow process. Quite impossible to couple with gas phase chemical network.

Formation of H_2

Formation of most abundant molecule, H_2

Variation of n_H and n_{H2} on grains:

$$\frac{dn_H}{dt} = \phi_H - W_H n_H - 2 \left(\frac{A_H}{S} \right) n_H^2$$
$$\frac{dn_{H2}}{dt} = \mu \left(\frac{A_H}{S} \right) n_H^2 - W_{H2} n_{H2}$$

Gas phase production

Recombination Rate

$$R_{H2} = (1 - \mu)(A_H/S^2)n_H^2 + W_{H2}n_{H2}$$

H₂ formation efficiency

Chakrabarti, Das et al. 2006, A&A

Difference between two methods would be attributed due to the assumption of average recombination efficiency ($R_e = A_H/S$) in case of rate equation method. In principle $R_e = A_H/S^{\alpha}$)

Chakrabarti S. K., Das A. et al., A&A, 2006

Chakrabarti, Das et al. 2006, A&A

 α_0 clearly deviates from 1. Thus it is essential to consider Monte Carlo method to appropriately study the grain chemistry.

Hydrogenation network for the formation of water and methanol

	Reactions	$E_a(K)$	Comments
1	$\rm H{+}H \rightarrow \rm H_2$		
2	$H+O \rightarrow OH$		
3	$H+OH \rightarrow H_2O$		
4	$H+CO \rightarrow HCO$	2000	390K ± 40K at 12K (Fuchs et al., 2009)
5	$H+HCO \rightarrow H_2CO$		
6	$H+H_2CO \rightarrow H_3CO$	2000	415K ± 40K at 12K (Fuchs et al., 2009)
7	$H+H_3CO \rightarrow CH_3OH$		
8	$O+O \rightarrow O_2$		
9	$O+CO \rightarrow CO_2$	1000	2970K (Talbi et al. 2002), 2500K (Goumans & Andersson 2010)
10	$O+HCO \rightarrow CO_2+H$		
11	$O+O_2 \rightarrow O_3$		
12	$H+O_2 \rightarrow HO_2$	1200	barrier less (Ioppolo et al., 2008)
13	$H+HO_2 \rightarrow H_2O_2$		
14	$H+H_2O_2 \rightarrow H_2O+OH$	1400	barrier less (Cazaux et al., 2010)
15	$H+O_3 \rightarrow O_2+OH$	450	
16	$\rm H2+OH \rightarrow H_2O+H$	2600	

Simulation in mono-layer regime

Recombination efficiency strongly depends on surface coverage

Simulation in the multi-layer regime

Observed abundance of ice phase species with respect to H2O

Boogert et al., 2004

Composition of grain mantle

Observational evidences along dense cloud

No. of maximum layer ~ 100

Surface Coverage of H₂O >60%~abundance 10⁻⁴

2% < CH₃OH < 30% w.r.t. H₂O

2<CO2<20% w.r.t. H₂O

Our Results Dominated by H_2O , CH_3OH , CO_2 and CO

Das et al., 2010, MNRAS

Various routes to the formation of H₂O

Das et al., 2011, MNRAS

Why Deuterium fractionation is important?

Sources of deuterium

Deuterium is destroyed in the interior of stars faster than it produced

Measurement of D/H ratio Earth's Oceans – 1.5 × 10⁻⁴ Neptune, Uranus, Titan – 1-2 × 10⁻⁴ Comet Halley – 4 × 10⁻⁴ Jupiter, Saturn – 2 × 10⁻⁵ Nearby Interstellar Medium – 1–3 × 10⁻⁵

Mostly Observed deuterated species around the ISM

HD	H₂D⁺	D₂H⁺	DCN	DNC
N₂D⁺	CCD	C ₃ HD	DC ₃ N	DC_5N
HDO	HDCS	HDCO	D ₂ CO	DCO⁺
CH₃OD	CH₂DOH	CHD₂OH	CD30H	CH₂DCN
NH₂D	NHD ₂	ND ₃	C ₄ D	D ₂ CS
CH₂DCCH	CH₃CCD	HDS	D ₂ S	

Surprisingly some molecular fractionation ratio found to be >10⁻⁵ or even sometimes close to 1

Deuterium enrichment of most simplest & abundant species H2 @ low temperatures

Sahu, Das, Majumdar, Chakrabarti, 2015, New Astronomy

Deuterated network

	Reactions	$E_a(K)$
1	$H + H \rightarrow H_2$	
2	$H + O \rightarrow OH$	
3	$H + OH \rightarrow H_2O$	
4	$H + CO \rightarrow HCO$	390
5	$H + HCO \rightarrow H_2CO$	
6	$H + H_2CO \rightarrow H_3CO$	415
7	$H + H_3CO \rightarrow CH_3OH$	
8	$O + O \rightarrow O_2$	
9	$O + CO \rightarrow CO_2$	1000
10	$O + HCO \rightarrow CO_2 + H$	
11	$O + O_2 \rightarrow O_3$	
12	$H + O_2 \rightarrow HO_2$	
13	$H + HO_2 \rightarrow H_2O_2$	
14	$H + H_2O_2 \rightarrow H_2O + OH$	
15	$H + O_3 \rightarrow O_2 + OH$	450
16	$H_2 + OH \rightarrow H_2O + H$	2600
17	$H + D \rightarrow HD$	
18	$D + D \rightarrow D_2$	
19	$D + O \rightarrow OD$	
20	$D + OH \rightarrow HDO$	
21	$H + OD \rightarrow HDO$	
22	$D + OD \rightarrow D_2O$	
23	$D + CO \rightarrow DCO$	320
24	$H + DCO \rightarrow HDCO$	
25	$D + HCO \rightarrow HDCO$	
26	$D + H_2CO \rightarrow H_2DCO$	214
27	$D + HDCO \rightarrow HD_2CO$	173
28	$D + D_2CO \rightarrow D_3CO$	128
29	$H + HDCO \rightarrow H_2DCO$	380
30	$H + D_2CO \rightarrow HD_2CO$	340
31	$D + H_3CO \rightarrow CH_3OD$	
32	$D + H_2DCO \rightarrow CH_2DOD$	
33	$D + HD_2CO \rightarrow CHD_2OD$	
34	$D + D_3CO \rightarrow CD_3OD$	
35	$H + H_2DCO \rightarrow CH_3OD$	
36	$H + HD_{2}CO \rightarrow CH_{2}DOD$	
37	$H + D_9CO \rightarrow CHD_9OD$	
38	$O + DCO \rightarrow CO_2 + D$	
39	$D + O_2 \rightarrow DO_2$	
40	$D + HO_2 \rightarrow HDO_2$	
41	$D + DO_2 \rightarrow D_2O_2$	
42	$H + DO_2 \rightarrow HDO_2$	
43	$D + O_0 \rightarrow O_0 + OD$	450
44	$H_2 + OD \rightarrow HDO + H$	2600
45	$HD + OD \rightarrow HDO + D$	2600
46	$HD + OD \rightarrow D_{2}O + H$	2600
47	$HD + OH \rightarrow H_{2}O + D$	2600
48	$D_2 + OD \rightarrow D_2O + D$	2600
		and that had been

Classification of clouds

	Diffuse Atomic	Diffuse Molecular	Translucent	Dense Molecular
Defining Characteristic	$f^{n}_{H_{2}} < 0.1$	$f^{n}_{H_2} > 0.1 \ f^{n}_{C^+} > 0.5$	$f^n{}_{C^+} < 0.5 \ f^n{}_{CO} < 0.9$	$f^{n}_{CO} > 0.9$
A _V (min.)	0	~0.2	~1-2	$\sim 5 - 10$
Typ. n _H (cm ⁻³)	10–100	100-500	500-5000?	>104
Тур. Т (К)	30–100	30–100	15-50?	10-50
Observational	UV/Vis	UV/Vis IR abs	Vis (UV?) IR abs	IR abs
Techniques	H I 21-cm	mm abs	mm abs/em	mm em

Snow, McCall, 2006, ARAA, 44, 367

Our multi layer model strictly applies to 10K-15K. Thus we are defining cloud parameters based on the hydrogen number density and A_V .

Deuterium enrichment of the grain mantle

Das et al., 2015, MNRAS (communicated)

Chemical evolution of gas-grain species

<u>Mono-layer</u>

Conclusions

□ Monte carlo simulations are carried out for the formation of simple to complex molecules on interstellar grains.

Recombination efficiency is dependent upon the grain parameters like accretion rate, grain size, surface coverage, temperature etc.

Composition of grain mantle is heavily dependent upon surrounding physical conditions. Interstellar radiation field plays a crucial role towards the chemical composition.

 \Box Grain mantles are found to be heavily fractionated around some regions. Around the dense cloud region O_3 formation significantly enhanced.

Acknowledgement

- Liton Majumdar
 Sandip K. Chakrabarti
- Dipen Sahu