New insight on the abundances of metalbearing molecules in the circumstellar gas

Mario Hernandez Vera¹, Fabien Dumouchel¹, Jacek Klos² and <u>François Lique¹</u>

¹Laboratoire Ondes et Milieux Complexes Université du Havre, France ²Dpt. of chemistry and biochemistry University of Maryland, USA

- Metals are important constituents of the interstellar medium (ISM) and are among the most heavily depleted elements in dense clouds (major component of interstellar dust)
- Metal-bearing molecules in the ISM (including circumstellar gas) are crucial for the evaluation of dust grain composition, ionization balance, mass loss from evolved stars ...
- > Three families of metal-bearing molecules:

- Most common metal bearing molecules in the circumstellar gas.
- Detection towards circumstellar gas (IRC+10216)

Circumstellar envelope:

Part of the star which has a roughly spherical shape and is not gravitationally bound to the star core.

Schematic chemical structure of the circumstellar shell of an AGB star

- Isomerism occur in many metal cyanides (*Metal cyanides and isocyanides*)
 MgCN/MgNC
 AlCN*/AlNC
 SiCN/SiNC
- Metal cyanides and isocyanides have been observed in the outer envelope whereas they are predicted in the inner enveloppe (where dust forms)
- Formation of metal cyanides/isocyanides Radiative association of M⁺ (M=A1, Mg, Si) and cyanopolyynes followed by dissociative recombination (Dumbar & Petrie 2002)

$$M^{+} + HC_{2n+1}N \rightarrow MN(C_{2n+1}N)H^{+} + hv$$

$$\rightarrow M(C_{2n+1}N) + H$$

$$MN(C_{2n+1}N)H^{+} + e^{-} \rightarrow MCN/MNC + C_{2n}H$$

$$\rightarrow M + HC_{2n+1}N$$

- Chemistry and formation processes of metal cyanides is not well known
- ➢ Abundance determined assuming local thermodynamic equilibrium (LTE)
- \blacktriangleright Abundance ratio of the isomers = line intensity ratio
- * Not detected but considered in astrochemical modelling

Molecular abundances of metal cyanides/isocyanides are highly uncertain

> New insight on the abundances of metal-bearing molecules

➤ Spectral lines analysis

→ Interstellar molecules identification

⇒ Spectroscopic data

→ Physical conditions: Temperature, molecular abundance, gas density ...

⇒ Collisional rate coefficients

Survey of IRC+10216 (Gong et al. 2015)

Noema Radiotelescope

Alma interferometer

Knowledge of the population of the energy levels of molecules

Rate coefficients: Boltzmann average of the cross sections

Calculations of rate coefficients for interstellar molecules in collision with He and H₂

> New insight on the abundances of metal-bearing molecules ξ

➤ Spectral lines analysis

→ Interstellar molecules identification
⇒ Spectroscopic data

→ Physical conditions: Temperature, molecular abundance, gas density ...

Collisional rate coefficients

> Evolution of interstellar matter

→ Formation of **interstellar molecules**

Reactive rate constants

Plan:

- Structural and spectroscopic properties of metal cyanides / isocyanides
 - Equilibrium structure, dipole moments and rotational and vibrational
 - Isomerisation pathways
- Collisional excitation of metal cyanides / isocyanides by He
 - New *ab initio* potential energy surfaces
 - Collisional rate coefficients
- Modelling of metal cyanides / isocyanides emission spectra
- Conclusion

Noema Radiotelescope

Alma interferometer

II – Structural and spectroscopic properties of metal cyanides / isocyanides

> Determination of energies (E_{a} , in a.u.), relative energies (E_{r} , in cm⁻¹), geometries, dipole moments (μ , in D) and rotational (B, in Mhz) and vibrational constants (ω , in cm⁻¹)

Calculations at the (R)CCSD(T)/aug-cc-pV5Z levels using MOLPRO

Al —	R	- N — C	l-AINC $C_{\infty v}$ $X^1 \Sigma^+$	R = 1.8598 Å CN = 1.1838 Å $E_a = -334.726820$ $E_r = 0$	B μ $\omega = 2072$	B = 5895.85 $\mu = 3.3948$ $\omega = 2072(\sigma), 555(\sigma), 96(\pi)$	
Al —	R	- C N	l-AlCN $C_{\infty v}$ $X^1 \Sigma^+$	R = 2.0208 Å CN = 1.1674 Å $E_a = -334.717798$ $E_r = 1980$	B μ $\omega = 2174($	B = 4966.60 $\mu = 3.7204$ $2174(\sigma), 468(\sigma), 148(\pi)$	
Mg-	R	- N C	l-MgNC $C_{\infty v}$ $X^2 \Sigma^+$	R = 1.9468 Å CN = 1.1805 Å $E_{a} = -292.373596$ $E_{r} = 0$	B : μ : $\omega = 2093(\sigma$	$B = 5845.5 \\ \mu = 4.9514 \\ \omega = 2093(\sigma), 527(\sigma), 100(\pi)$	
Mg-	Mg R C –		l-MgCN $C_{\infty v}$ $X^2 \Sigma^+$	R = 2.0878 Å CN = 1.1674 Å $E_{a} = -292.370602$ $E_{r} = 657$	$B = \mu = \omega = \omega = 2176(\sigma$	B = 5009.81 $\mu = 5.3715$ $\omega = 2176(\sigma), 460(\sigma), 163(\pi)$	
Si —	R	- C N	l -Sic C_{∞} X^2	$\begin{array}{ccc} CN & R = \\ _{\text{ov}} & CN = \\ \Pi & E_{\text{a}} = - \\ & H \end{array}$	1.1708 Å = 1.8539 Å -381.709176 $E_r = 0$	B = 5490.71 $\mu = 2.8245$ $A_{so} = 66.09^{b}$	
Si —	R	- N C	$\begin{array}{c} l\text{-Sil}\\ C_{\infty}\\ X^2 \end{array}$	NC $R =$ ∇V $CN =$ Π $E_a = -$ E_b	1.7405 Å = 1.1900 Å -381.706679 g = 548	B = 6332.76 $\mu = 2.7290$ $A_{so} = 64.06^{b}$	

- All compounds are linear
- AINC, MgNC are more stable than AICN and MgCN, respectively
- SiCN is more stable than SiNC
- SiNC dipole moment is much higher than that used for astrophysical modelling (2.7 vs. 2.0* D)
- Rotational and vibrational constant are in good agreement with available experimental data

*Largo-Cabrerizo (1988)

II – Structural and spectroscopic properties of metal cyanides / isocyanides

Computation of the isomerization pathways

Calculations at the (R)CCSD(T)/aug-cc-pV5Z levels using MOLPRO

AlCN/AlNC, MgCN/MgNCand SiCN/SiNC isomerization pathways: one-dimensional cuts of the potential energy surfaces

➤ Out of linear geometry, the ²Π ground electronic state split in two potential energy surfaces of ²A' and ²A'' symmetry.

➤ Isomerization processes are expected to be very slow at typical circumstellar temperatures

 $E_a(AlCN \rightarrow AlNC) \approx 2500 \ K$ $E_a(MgCN \rightarrow MgNC) \approx 2000 \ K$ $E_a(SiCN \rightarrow SiNC) \approx 11000 \ K$

Senent et al., MNRAS 420, 1188 (2012)

Both isomers have to be produced independently

Collisional cross sections calculations: $\sigma_{ij}(E_k)$

Accuracy

- **Close Coupling** (Exact calculations; CPU time : (Channel number)³)
- Coupled states (Neglect coupling between rotational momentum and angular momentum)
- **IOS** (Neglect rotation of the molecule during collision)

- 2 degrees of freedom : R et θ
- AlCNHe ground electronic state: ¹A' MgCNHe ground electronic state: ²A'
- Monoconfigurational (MCSCF)
 - Coupled Clusters can be used
- Calculations done with MOLPRO
- aug-cc-pVTZ basis set + bond func.
- BSSE corrections

Contour plots of the MgC-He (a), MgNC-He (b), AlCN-He (c) and AlNC-He (d) potential energy surface

- 2 degrees of freedom : R et θ
- AlCNHe ground electronic state: ¹A' MgCNHe ground electronic state: ²A'
- Monoconfigurational (MCSCF)
 - Coupled Clusters can be used
- Calculations done with MOLPRO
- aug-cc-pVTZ basis set + bond func.
- BSSE corrections
- > Legendre polynomials expansion: $V(R,\theta) = \sum V_{\lambda}(R)P_{\lambda}(\cos\theta)$

Plot of the first radial coefficients($\lambda=0...3$) as a function of R. (a) The solid lines denote AlCN-He while the dashed lines denote AlNC-He. (b) The solid lines denote MgCN-He while the dashed lines denote MgNC-He

When interacting with He, the doublydegenerate Π electronic state is split into two states of A' and A" symmetry corresponding to the singly occupied π orbital lying in, or perpendicular to, the tetratomic plane, respectively.

- 2 degrees of freedom : R et θ
- Monoconfigurational (MCSCF)
 - Coupled Clusters can be used
- Calculations done with MOLPRO
- aug-cc-pVTZ basis set + bond func.
- BSSE corrections

Contour plots (in cm⁻¹) of the SiCN-He and SiNC-He A' (upper panel) and A" (lower panel) potential energy surface.

Rotational structure of AlCN / AlNC / MgCN / MgNC / SiCN / SiNC molecules

Temperature variation of AlCN-He and AlNC-He rate coefficients

- > Similar order of magnitude and similar temperature variation
- \blacktriangleright Same propensity rules in favor of odd ΔN transitions
- Significant differences for $\Delta N=1$ transitions $(k_{AlCN}(T) > k_{AlNC}(T))$

 $\Delta N=1$ transitions: radiative transitions \Rightarrow *Impact on radiative transfer calculations* ?

AICN-He and AINC-He: rate coefficients

AlCN-He and AlNC-He de-excitation rate coefficients from N = 12 at 50 K

- ➤ Similar order of magnitude and similar temperature variation
- > Same propensity rules in favor of odd ΔN transitions
- Significant differences for $\Delta N=1$ transitions $(k_{AlCN}(T) > k_{AlNC}(T))$

 $\Delta N=1$ transitions: radiative transitions \Rightarrow *Impact on radiative transfer calculations* ?

Propensity rules in favor of $\Delta j = \Delta N$ transitions

- Different variation with temperature
- Different propensity rules with respect to odd and even ΔN transitions
- Selection rules explained by PES:

anisotropic PES: $\Delta N = 1$ isotropic PES: $\Delta N = 2$

Specific calculations should be performed for the two isomers

Temperature variation of MgCN-He (a) and MgNC-He (b) rate coefficients; Upper panels: $\Delta j = \Delta N$ transitions; lower panels: $\Delta j \neq \Delta N$

Vera et al., MNRAS 432, 468 (2013)

MgCN-He and MgNC-He: rate coefficients

- > Propensity rules in favor of $\Delta j = \Delta N$ transitions
- Different variation with temperature
- Different propensity rules with respect to odd and even ΔN transitions
- Selection rules explained by PES: anisotropic PES: $\Delta N = 1$ isotropic PES: $\Delta N = 2$

Specific calculations should be performed for the two isomers

MgCN-He and MgNC-He de-excitation rate coefficients from N = 12 at 50 K for $\Delta j = \Delta N$ (upper panel) and $\Delta j \neq \Delta N$ (lower panel) transitions

Vera et al., MNRAS 432, 468 (2013)

SiCN-He and SiNC-He: rate coefficients

- Propensity rules in favor spin-orbit conserving transitions
- Propensity in favor of Λdoublet conserving labels (e → e / f → f) for spinorbit conserving transitions
- Global agreement for the two sets of data
- SiCN-He: $\Delta j = 1$ favored SiNC-He: $\Delta j = 2$ favored

 Moderate differences:
 impact on radiative transfer calculations ?

Temperature variation of SiCN-He and SiNC-He rate coefficients; Upper panels: spin orbit conserving transitions ; lower panels: spin orbit changing transitions

SiCN-He and SiNC-He: rate coefficients

- Propensity rules in favor spin-orbit conserving transitions
- Propensity in favor of Λdoublet conserving labels (e → e / f → f) for spinorbit conserving transitions
- Global agreement for the two sets of data
- SiCN-He: $\Delta j = 1$ favored SiNC-He: $\Delta j = 2$ favored

Moderate differences: impact on radiative transfer calculations ?

SiCN-He and SiNC-He de-excitation rate coefficients at 25 K from $j = 8.5 f(F_1)$ (upper panel) and from $j = 8.5 f(F_2)$ (lower panel)

Radiative transfer

- ➤ ISM and circumstellar enveloppes are out of Local Thermodynamic Equilibrium (LTE)
- Population of molecular levels given by radiation field and density (collisions depend on the density)
- ➢ Or, radiation field is also given by population of molecular levels ...

Solve simultanously statistical equilibrium + transfer equation

Determine intensity of spectra for en **3 physical parameters** (for a given geometry of the molecular cloud) :

Column density N or abondance, gas density n(H₂), Temperature T

Intensity are given in brightness temperature $T_B \left(T_B = \frac{c^2}{2kv^2} Iv \right)$

The excitation temperature (T_{ex}) is the temperature at which we would expect to find 20 a system with this ratio of level populations rightarrow LTE is valid when $T_{Ex} = T$

	AINC	AICN	MgNC	MgCN	SiNC	SiCN
Observed	$11 \rightarrow 10$	Not	$7 \rightarrow 6$	$9 \rightarrow 8$	$6.5 \rightarrow 5.5$	$7.5 \rightarrow 6.5$
lines	$12 \rightarrow 11$	detected	$8 \rightarrow 7$	$10 \rightarrow 9$	$7.5 \rightarrow 6.5$	$8.5 \rightarrow 7.5$
	$13 \rightarrow 12$		$9 \rightarrow 8$	$11 \rightarrow 10$	$8.5 \rightarrow 7.5$	$9.5 \rightarrow 8.5$
	$18 \rightarrow 17$		$12 \rightarrow 11$		$10.5 \rightarrow 9.5$	
	$21 \rightarrow 20$		$13 \rightarrow 12$			
			$14 \rightarrow 13$		All within	All within
			$19 \rightarrow 18$		F_1 manifold	F_1 manifold
N	9 10 ¹¹ cm ⁻²		$5 \ 10^{13} \ \mathrm{cm}^{-2}$	$2 \ 10^{12} \ \mathrm{cm}^{-2}$	$2 \ 10^{12} \ \mathrm{cm}^{-2}$	$2 \ 10^{12} \ \mathrm{cm}^{-2}$

Physical conditions explored : T = 20 - 100 K; $n(H_2) = 10^2 - 10^8 \text{ cm}^{-3}$; $N=10^{11} - 10^{13} \text{ cm}^{-2}$

AICN and AINC excitation in circumstellar media

Excitation temperature (T_{Ex} , dashed lines), brightness temperature (T_B , solid lines) and brightness temperature ratios for two lines of AlCN and AlNC. The linewidth is 30 km s⁻¹.

- \succ T_{Ex} are independent of N / T_B is proportional to N \Rightarrow The lines are optically thin
- > LTE conditions are reached for $n(H_2) > 10^6 \text{ cm}^{-3}$
- AlCN presents a stronger emission than the AlNC
 Line intensities ratios cannot provide abundance ratio

 AlNC is much more abundant than AlCN (else it would be detected !)

MgCN and MgNC excitation in circumstellar media $N_{J}=9_{9.5} \rightarrow 8_{8.5}$ MgCN $N_{J}=9_{95} \rightarrow 8_{85}$ MgNC $N_{J} = 9_{95} \rightarrow 8_{85}$ 10^{2} 25 10^{2} 25 1.6 $N_{c} = 10^{11} \text{cm}^{-2}$ $N_{c} = 10^{11} \text{cm}^{-2}$ $N_{c} = 10^{11} \text{cm}^{-2}$ T_B[MgCN] / T_B[MgNC] 10^{0} $-N_{c}=10^{12}$ cm⁻² 10^{0} $N_{\rm C} = 10^{12} {\rm cm}^{-2}$ $N_{c}=10^{12} cm^{-2}$ 20 20 1.4 N_C=10¹³cm⁻² $N_{c} = 10^{13} cm^{-2}$ $N_{o}=10^{13} cm^{-2}$ € 10⁻² | € 10⁻² ⊢ 10⁻⁴ 15 (ץ)^{×∃}⊥ 10 ⊥ 15 (¥)^{×⊔} 10 ⊢ 1.2 ⊢^m10^{-∠} 1 T_K = 20 K -T_K = 20 K 10^{-6} 10^{-6} T_K = 20 K 5 5 0.8 10⁻⁸ 10⁸⁰ ____₈0 0.6 10 $10^5 \ 10^6 \ 10^7$ $10^6 10^7$ 10⁴ 10⁵ 10³ 10^{8} 10^{4} 10^{6} 10^{2} 10^{3} 10^{2} 10^{3} 10^{4} 10^{2} 10^{5} 10^{7} n(cm⁻³) n(cm⁻³) n(cm⁻³) $N_J = 11_{11.5} \rightarrow 10_{10.5}$ $N_{J}=11_{11.5} \rightarrow 10_{10.5}$ MgNC $N_J = 11_{11.5} \rightarrow 10_{10.5}$ MgCN 10^{2} 10^{2} 25 25 1.6 $N_{\rm C} = 10^{11} {\rm cm}^{-2}$ $N_{\rm C} = 10^{11} {\rm cm}^{-2}$ $N_{c} = 10^{11} \text{cm}^{-2}$ $T_B[MgCN] / T_B[MgNC]$ $-N_{\rm C}=10^{12}{\rm cm}^{-2}$ $N_{\rm C} = 10^{12} {\rm cm}^{-2}$ $N_c = 10^{12} cm^{-2}$ 10⁰ 10⁰ 20 20 1.4 $N_{c}=10^{13} cm^{-2}$ $N_{o}=10^{13} cm^{-2}$ $N_{C} = 10^{13} cm^{-1}$ € 10⁻² | € 10⁻² ⊢ 10⁻⁴ 15 (¥) 10 ⊢ 15 (¥) 10 ⊢^ш 1.2 ⊢^m10⁻⁴ 1 10^{-6} T_K = 20 K -T_K = 20 K T_K = 20 K 10^{-6} 5 5 0.8 10^{-8} ____₈0 _____80 10⁻⁶ 0.6 10⁶ 108 10^{6} 10^{7} 10⁶ 10^{2} 10^{5} 10^{2} 10^{7} 10^{7} 10^{3} 10^{4} 10^{3} 10^{4} 10° 10 10^{2} n(cm⁻³) n(cm⁻³) n(cm⁻³)

Excitation temperature (T_{Ex} , dashed lines), brightness temperature (T_B , solid lines) and brightness temperature ratios for two lines of MgCN and MgNC. The linewidth is 30 km s⁻¹.

- \succ T_{Ex} are independent of N / T_B is proportional to N \Rightarrow The lines are optically thin
- > LTE conditions are reached for $n(H_2) > 10^6 \text{ cm}^{-3}$
- MgCN presents a stronger emission than MgNC at low n(H₂) and a slightly weaker emission than MgNC at high n(H₂)
 Vera et al., MNRAS 448, 2438 (2015)

Excitation temperature (T_{Ex} , dashed lines), brightness temperature (T_B , solid lines) and brightness temperature ratios for two lines of SiCN and SiNC. The linewidth is 30 km s⁻¹.

- \succ T_{Ex} are independent of N / T_B is proportional to N \Rightarrow The lines are optically thin
- > LTE conditions are reached for $n(H_2) > 5 \ 10^5 \ cm^{-3}$

Vera et al., MNRAS in press (2015)

SiCN and SiNC emission is similar. SiCN presents a slightly stronger emission than SiNC at low n(H₂) and a slightly weaker emission than SiNC at high n(H₂)

Column density dependance of T_B is similar

➢ Previous estimation (Guelin et al. 2004): $\frac{T_B[SiCN]}{T_B[SiNC]} \approx 2 \Rightarrow \frac{N[SiCN]}{N[SiNC]} \approx 1 \stackrel{(Corrected from different µ)}{(Corrected from different µ)}$

Present estimation:

 $rac{N[SiCN]}{N[SiNC]} \approx 2$

SiCN is 2 times more abundant than SiNC !

V – Conclusions and outlook

- New spectroscopical data / Isomerization pathways
- New collisional data (first published for metal cyanides)
- > New set of radiative transfer calculations for the excitation of metal cyanides
- > Non-LTE calculations are required for each isomer
- Selective cyanides chemistry in favor of the most stable isomers

Branching ratio of $MN(C_{2n+1}N)H^+ + e^- \rightarrow MCN/MNC + C_{2n}H$ reaction favor the most stable isomer ?

- Computation of collisional rate coefficients of metal cyanides/isocyanides with H₂ (differences may be larger as in the case of HCN/HNC)
- Performed similar study for other metal cyanide/isocyanides such as NaCN / KCN / FeCN
- ➤ Review metal-bearing molecules chemistry in the circumstellar gas (in particular determination of branching ratio of $MN(C_{2n+1}N)H^+ + e^- \rightarrow MCN/MNC + C_{2n}H$ reaction)
- New observations of metal cyanides and isocyanides toward IRC+10216 and others circumstellar enveloppes

Acknowledgement

French embassy in Cuba