New insight on the abundances of metalbearing molecules in the circumstellar gas

Mario Hernandez Vera¹, Fabien Dumouchel¹, Jacek Klos² and François Lique¹

1Laboratoire Ondes et Milieux Complexes Université du Havre, France 2Dpt. of chemistry and biochemistry University of Maryland, USA

- \triangleright Metals are important constituents of the interstellar medium (ISM) and are among the most heavily depleted elements in dense clouds (major component of interstellar dust)
- \triangleright Metal-bearing molecules in the ISM (including circumstellar gas) are crucial for the evaluation of dust grain composition, ionization balance, mass loss from evolved stars …
- \triangleright Three families of metal-bearing molecules:

- Ø **Most common metal bearing molecules** in the circumstellar gas.
- \triangleright Detection towards circumstellar gas (IRC+10216)

Circumstellar envelope:

Part of the star which has a roughly spherical shape and is not gravitationally bound to the star core.

Schematic chemical structure of the circumstellar shell of an AGB star

- Ø **Isomerism** occur in many metal cyanides (*Metal cyanides and isocyanides) MgCN/MgNC AlCN*/AlNC SiCN/SiNC*
- \triangleright Most stable isomer = most abundant (MgCN/MgNC, AlCN/AlNC) ✓ **This is not a systematic trend (SiCN/SiNC)**
- Ø Metal cyanides and isocyanides have been **observed in the outer envelope** whereas they are **predicted in the inner enveloppe** (where dust forms)
- \triangleright Formation of metal cyanides/isocyanides Radiative association of M+ (M=Al, Mg, Si) and cyanopolyynes followed by dissociative recombination (Dumbar & Petrie 2002)

$$
M^{+} + HC_{2n+1}N \rightarrow MN(C_{2n+1}N)H^{+} + hv
$$

\n
$$
\rightarrow M(C_{2n+1}N) + H
$$

\n
$$
MN(C_{2n+1}N)H^{+} + e^{-} \rightarrow MCN/MNC + C_{2n}H
$$

\n
$$
\rightarrow M + HC_{2n+1}N
$$

- \triangleright Chemistry and formation processes of metal cyanides is not well known
- \triangleright Abundance determined assuming local thermodynamic equilibrium (LTE)
- \triangleright Abundance ratio of the isomers = line intensity ratio
- ** Not detected but considered in astrochemical modelling*

Molecular abundances of metal cyanides/isocyanides are highly uncertain

➢ New insight on the abundances of metal-bearing molecules

➢ **Spectral lines analysis**

→ Interstellar **molecules identification**

➩ **Spectroscopic data**

→ **Physical conditions**: Temperature, molecular abundance, gas density …

➩ **Collisional rate coefficients**

Survey of IRC+10216 (Gong et al. 2015)

Noema Radiotelescope

Alma interferometer

Knowledge of the population of the energy levels of molecules

Rate coefficients: Boltzmann average of the cross sections

Calculations of rate coefficients for interstellar molecules in collision with He and H₂

 \triangleright New insight on the abundances of metal-bearing molecules[§]

➢ **Spectral lines analysis**

- → Interstellar **molecules identification** ➩ **Spectroscopic data**
- → **Physical conditions**: Temperature, molecular abundance, gas density …

➩ **Collisional rate coefficients**

➢ **Evolution of interstellar matter**

→ Formation of **interstellar molecules**

➩ **Reactive rate constants**

- **Structural and spectroscopic properties of metal cyanides / isocyanides**
	- Equilibrium structure, dipole moments and rotational and vibrational
	- Isomerisation pathways
- **Collisional excitation of metal cyanides / isocyanides by He**
	- New *ab initio* potential energy surfaces
	- Collisional rate coefficients
- **Modelling of metal cyanides / isocyanides emission spectra**
- **Conclusion**

Plan : *Noema Radiotelescope*

Alma interferometer

II – Structural and spectroscopic properties of metal cyanides / isocyanides X1 + Ea = 2003, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 200
(σ), 399(σ), *E* and spectroscopic properties of met $\mathbf{C}\mathbf{L}\mathbf{C}\mathbf{S}^t$

C∞^v CN = 1.1709 Å µ = 11.1347 **≻** Determination of *energies (E_α, in a.u.), relative energies (E_{<i>r*}, in cm⁻¹), *geometries, dipole* \int *EREFIGE* (E_a) *IR* α ³ *moments (μ, in D) and rotational (B, in Mhz) and vibrational constants (ω, in cm⁻¹)*

 $\sum_{n=1}^{\infty} \frac{d^n}{dx^n}$ is at the (R) CCSD *Calculations at the (R)CCSD(T)/aug-cc-pV5Z levels using MOLPRO*

C∞v CN <mark>→ 11.28190 Å µ = 11.28190 Å µ = 11.28190 Å µ = 11.28190 Å µ = 11.28190 Å </u></mark>

C∞v CN = 1.1674 Å µ = 5.3715 Å µ = 5.

l-Na-CN *R* = 2.2759 Å *B* = 4514.79

- \triangleright All compounds are linear
- \triangleright AlNC, MgNC are more stable than AlCN and MgCN, respectively
- \triangleright SiCN is more stable than SiNC
- \triangleright SiNC dipole moment is for astrophysical modelling $(2.7 \text{ vs. } 2.0^* \text{ D})$
- $\mu = 2.8245$ constant are in good $M_{\rm so} = 66.09$ agreement with available $R_{\rm c} = 0$ \triangleright Rotational and vibrational experimental data

**Largo-Cabrerizo (1988)*

II – Structural and spectroscopic properties of metal cyanides / isocyanides

 \triangleright Computation of the isomerization pathways

Calculations at the (R)CCSD(T)/aug-cc-pV5Z levels using MOLPRO

one-dimensional cuts of the potential energy surfaces

 \triangleright Out of linear geometry, the ²Π ground electronic state split in two potential energy surfaces of 2A ' and 2A '' symmetry.

 \triangleright Isomerization processes are expected to be very slow at typical circumstellar temperatures

 $E_a(AICN \rightarrow AlNC) \approx 2500 K$ $E_a(MgCN \rightarrow MgNC) \approx 2000 K$ $E_a(SiCN \rightarrow SiNC) \approx 11000 K$

Senent et al., MNRAS 420, 1188 (2012)

➩ *Both isomers have to be produced independantly*

Collisional cross sections calculations: $\sigma_{ij}(E_k)$

- **Close Coupling** (Exact calculations; CPU time : (Channel number)3)
- Accuracy **| Coupled states** (Neglect coupling between rotational momentum and angular momentum)
	- **IOS** (Neglect rotation of the molecule during collision)

- 2 degrees of freedom : R et θ
- AlCNHe ground electronic state: 1A' MgCNHe ground electronic state: ²A'
- Monoconfigurational (MCSCF)
	- ➨ *Coupled Clusters can be used*
- Calculations done with MOLPRO
- aug-cc-pVTZ basis set $+$ bond func.
- BSSE corrections

Contour plots of the MgC-He (a), MgNC-He (b), AlCN-He (c) and AlNC-He (d) potential energy surface

- 2 degrees of freedom : R et θ
- AlCNHe ground electronic state: 1A' MgCNHe ground electronic state: ²A'
- Monoconfigurational (MCSCF)
	- ➨ *Coupled Clusters can be used*
- Calculations done with MOLPRO
- aug-cc-pVTZ basis set $+$ bond func.
- BSSE corrections
- \triangleright Legendre polynomials expansion: $V(R,\theta) = \sum V_{\lambda}(R)P_{\lambda}(\cos\theta)$ λ

Plot of the first radial coefficients(λ =0 ... 3) as a function of *R. (a) The solid lines denote AlCN-He while the dashed lines denote AlNC-He. (b) The solid lines denote MgCN-He while the dashed lines denote MgNC-He*

When interacting with He, the doublydegenerate ^Π *electronic state is split into two states of A' and A'' symmetry corresponding to the singly occupied π orbital lying in, or perpendicular to, the tetratomic plane, respectively.*

- 2 degrees of freedom : R et θ
- Monoconfigurational (MCSCF)
	- ➨ *Coupled Clusters can be used*
- Calculations done with MOLPRO
- aug-cc-pVTZ basis set $+$ bond func.
- **BSSE** corrections

Contour plots (in cm-1) of the SiCN-He and SiNC-He A' (upper panel) and A'' (lower panel) potential energy surface.

Rotational spectroscopy of MgCN and MgNC **III – Collisional excitation of metal cyanides / isocyanides by He**

▶ Rotational structure of AlCN / AlNC / MgCN / MgNC / SiCN / SiNC molecules

Temperature variation of AlCN-He and AlNC-He rate coefficients

- \triangleright Similar order of magnitude and similar temperature variation
- Ø Same propensity rules in favor of odd ∆N transitions
- \triangleright Significant differences for ΔN=1 transitions (k_{AlCN}(T) > k_{AlNC}(T))

∆N=1 transitions: radiative transitions ➨ *Impact on radiative transfer calculations ?*

AlCN-He and AlNC-He: rate coefficients

AlCN-He and AlNC-He de-excitation rate coefficients from N = 12 at 50 K

- \triangleright Similar order of magnitude and similar temperature variation
- Ø Same propensity rules in favor of odd ∆N transitions
- \triangleright Significant differences for ΔN=1 transitions (k_{AlCN}(T) > k_{AlNC}(T))

∆N=1 transitions: radiative transitions ➨ *Impact on radiative transfer calculations ?*

Temperature variation of MgCN-He (a) and MgNC-He (b) rate coefficients; Upper panels: ∆j=∆N transitions ; lower panels: ∆j≠∆N

Vera et al., MNRAS 432, 468 (2013)

MgCN-He and MgNC-He: rate coefficients

- \triangleright Propensity rules in favor of ∆j=∆N transitions
- \triangleright Different variation with temperature
- \triangleright Different propensity rules with respect to odd and even ∆N transitions
- \triangleright Selection rules explained by PES: *anisotropic PES: ∆N = 1 isotropic PES: ∆N = 2*

➩ *Specific calculations should be performed for the two isomers*

MgCN-He and MgNC-He de-excitation rate coefficients from N = 12 at 50 K for ∆j=∆N (upper panel) and ∆j≠∆N (lower panel) transitions

Vera et al., MNRAS 432, 468 (2013)

SiCN-He and SiNC-He: rate coefficients

- \triangleright Propensity rules in favor spin-orbit conserving transitions
- \triangleright Propensity in favor of Λ doublet conserving labels $(e \rightarrow e / f \rightarrow f)$ for spinorbit conserving transitions
- \triangleright Global agreement for the two sets of data
- \triangleright SiCN-He: $\Delta i = 1$ favored SiNC-He: $\Delta j = 2$ favored

 \Box *Moderate differences: impact on radiative transfer calculations ?*

Temperature variation of SiCN-He and SiNC-He rate coefficients; Upper panels: spin orbit conserving transitions ; lower panels: spin orbit changing transitions

SiCN-He and SiNC-He: rate coefficients

- \triangleright Propensity rules in favor spin-orbit conserving transitions
- \triangleright Propensity in favor of Λ doublet conserving labels $(e \rightarrow e / f \rightarrow f)$ for spinorbit conserving transitions
- \triangleright Global agreement for the two sets of data
- \triangleright SiCN-He: $\Delta j = 1$ favored SiNC-He: $\Delta j = 2$ favored

 \Rightarrow *Moderate differences: impact on radiative transfer calculations ?*

SiCN-He and SiNC-He de-excitation rate coefficients at 25 K from $j = 8.5 f(F₁)$ *(upper panel) and from* $j = 8.5 f(F_2)$ *(lower panel)*

Radiative transfer

- \triangleright ISM and circumstellar enveloppes are out of Local Thermodynamic Equilibrium (LTE)
- \triangleright Population of molecular levels given by radiation field and density (collisions depend on the density)
- \triangleright Or, radiation field is also given by population of molecular levels ...

➩ **Solve simultanously statistical equilibrium + transfer equation**

$$
\bigcup_{\text{radiative transfer code : LVG (RADEX - van der Tak et al., 2007)}}
$$

ò

Determine intensity of spectra for en **3 physical parameters** (for a given geometry of the molecular cloud) :

Column density **N** or **abondance**, gas density $n(H_2)$, Temperature **T**

Intensity are given in brightness temperature $T_B \left(T_B \right) = \frac{c^2}{2L}$ $\frac{c}{2kv^2}Iv$ $\sqrt{ }$ \setminus $\overline{}$ \setminus ' $\overline{}$

20 *The excitation temperature* (T_{ex}) *is the temperature at which we would expect to find a system with this ratio of level populations* \blacktriangleright *LTE is valid when* $T_{Ex} = T$

Physical conditions explored : T = 20 - 100 K ; $n(H_2) = 10^2 - 10^8$ cm⁻³ ; N=10¹¹ - 10¹³ cm⁻²

panels) for the *^N* ⁼ ¹⁸ [→] 17 and *^N* ⁼ ¹¹ [→] 10 lines of AlCN and AlNC. The H2 volume density varies between 100 and 108 cm−³ and the AlCN and AlNC **AICN and AINC excitation in circumstellar media**

at Observatoire de Paris - Bibliotheque on March 4, 2015 http://mnras.oxfordjournals.org/ Downloaded from

 E xcitation temperature (T_{Ex} , dashed lines), brightness temperature (T_B , solid lines) and brightness *temperature ratios for two lines of AlCN and AlNC. The linewidth is 30 km s[−]1.*

- \triangleright T_{Ex} are independent of N / T_B is proportional to N \blacktriangleright The lines are optically thin \mathbf{h} is denoted at differences are more proposed at \mathbf{h} $\mathcal{F}_{\mathcal{A}}$ show similar plots for the MgCN/MgNC molecules. case of Alcohometers, the column density does not affect the column density does n
- \mathbf{E} conditions are reached for $n(\mathbf{H})$ $\leq 10^6$ \triangleright LTE conditions are reached for n(H₂) > 10⁶ cm⁻³ -3
- \mathbf{S} \Box N presents a stronger emission than the $\n *Indance ratio*\n $-\lambda$ \n *AlNC is much more*$ $\frac{1}{\sqrt{1-\frac{1$ $\text{N}_C \triangleq \text{I}$ in a intensities retire connect pro 106 cm−³ at low temperatures and slightly increases with increasing Ø AlCN presents a stronger emission than the AlNC ➨ Line intensities ratios cannot provide $\mathbf{u}_\mathbf{n}$ dant $\mathbf{u}_\mathbf{n}$ abundance ratio \Rightarrow **AINC is much more abundant than AICN (else it would be detected !)**

MgCN and MgNC excitation in circumstellar media $N_J = 9_{9.5} \rightarrow 8_{8.5}$ MgCN $N_J = 99.5 \rightarrow 88.5$ MgNC $N_J = 9_{9.5} \rightarrow 8_{8.5}$ 10^{2} 25 10^2 25 1.6 $N_{\rm C}$ =10¹¹ cm⁻² $N_c = 10^{11}$ cm⁻² $N_{\odot} = 10^{11}$ cm⁻² T_B [MgCN] / T_B [MgNC] $10⁰$ $-N_C=10¹²cm⁻²$ $10⁰$ $-N_C=10¹²cm⁻²$ $N_c = 10^{12}$ cm⁻² 20 20 1.4 $N_{\rm C}$ =10¹³cm⁻² $N_{\rm C}$ =10¹³cm⁻² $N_{\odot} = 10^{13}$ cm⁻² $\left| \mathcal{L}\right|$ 10⁻² $\frac{\text{C}}{\text{m}^2}$ 10⁻²
 $\frac{\text{m}}{\text{m}}$ 10⁻⁴ $\frac{15}{10} \frac{\text{C}}{\text{h}^2}$ $\begin{array}{c}\n15 \leq \\
10 \leq \widehat{p}\n\end{array}$ 1.2 F^{m} 10⁻⁴ T_K = 20 K - 10^{-6} T_K = 20 K 10^{-6} T_K = 20 K 5 5 0.8 10^{-8} $\frac{1}{10^{8}}$ 0 $\frac{1}{108}$ ⁰ 0.6 10 10^6 10^7 $\frac{1}{10^8}$ 10^{2} $10⁴$ $\overline{10^5}$ 10^6 10^7 $\overline{10^4}$ $\overline{10^5}$ $10³$ 10^{4} $\overline{10^5}$ 10^6 10^{7} 10^{3} 10^2 10^{3} 10^2 n (cm⁻³) n (cm $^{-3}$) n (cm⁻³) $N_J = 11_{11.5} \rightarrow 10_{10.5}$ **MgNC** $N_J = 11_{11.5} \rightarrow 10_{10.5}$ $N_J = 11_{11.5} \rightarrow 10_{10.5}$ **MgCN** 10^{2} 10^{2} 25 25 1.6 $N_C = 10^{11}$ cm⁻² $N_C = 10^{11}$ cm $N_c = 10^{11}$ cm⁻² T_B[MgCN] / T_B[MgNC] $N_{\rm C}$ =10¹²cm⁻² $-N_{\rm C}$ =10¹²cm⁻² $N_c = 10^{12}$ cm⁻² $10⁰$ $10⁰$ 20 20 1.4 $N_c = 10^{13}$ cm $N_c = 10^{13}$ cm⁻² $\mathfrak{S}10^{-2}$ $\frac{\text{C}}{\text{m}^2}$ 10⁻²
 $\frac{\text{m}}{\text{m}}$ 10⁻⁴ $\begin{array}{c} 15 \leq \\ 10 \text{ F} \end{array}$ $\begin{array}{c} 15 \leq \\ 10 \text{ } \longleftarrow \end{array}$ 1.2 F^{2} 10⁻⁴ $\overline{1}$ T_K = 20 K - T_K = 20 K $\frac{1}{2}$ 10^{-6} 10^{-6} T_K = 20 K 5 5 0.8 10^{-8} $\frac{1}{108}$ ⁰ $\frac{1}{10^8}$ 0 $10⁷$ 0.6 10^6 10^6 $\frac{1}{10^8}$ 10^5 10^{7} 10^2 10^{7} $10³$ $10⁴$ 10^{6} 10^{7} $10⁴$ 10° $10⁴$ 10^5 n (cm⁻³) n (cm⁻³)

 $\begin{bmatrix} 1 \end{bmatrix}$

Excitation temperature (T_{Ex}, dashed lines), brightness temperature (T_B, solid lines) and brightness temperature ratios for two lines of MgCN and MgNC. The linewidth is 30 km s^{−1}. $\frac{1}{2}$ by a step factor of 1011 to 10. The kinetic temperature is 20 km s $\frac{1}{2}$. The linewidth is 30 km s $\frac{1}{2}$. *temperature ratios for two lines of MgCN and MgNC. The linewidth is 30 km s[−]1.*

- \triangleright T_{Ex} are independent of N / T_B is proportional to N \blacktriangleright The lines are optically thin
- \overline{a} in the coefficients coefficien \triangleright LTE conditions are reached for n(H₂) > 10⁶ cm⁻³ α ences in the rate coefficients. Then, we have a significant impact in the rate α
- \triangleright MgCN presents a stronger emission than MgNC at low n(H₂) and a slightly weaker emission $\mathbf{M}\cdot\mathbf{N}C$ at high $p(\mathbf{H})$ T_{MgN} at T_{Hg} T_{Hg} than MgNC at high n(H₂) *Vera et al., MNRAS 448, 2438 (2015)*

Excitation temperature (T_{F_r} *, dashed lines), brightness temperature (* T_B *, solid lines) and brightness* temperature ratios for two lines of SiCN and SiNC. The linewidth is 30 km s^{-1} . *iemperature ratios for two tines of SiCIN and Silve. The tinewidin is 50 km s⁻.*

- \triangleright T_{Ex} are independent of N / T_B is proportional to N \blacktriangleright The lines are optically thin $\epsilon_{\rm x}$ are mue pendent of $\bf x$ / $\bf r_B$ is pre
- \triangleright LTE conditions are reached for n(H₂) > 5 10⁵ cm⁻³

Vera et al., MNRAS in press (2015)

 \triangleright SiCN and SiNC emission is similar. SiCN presents a slightly stronger emission than SiNC at low $n(H_2)$ and a slightly weaker emission than SiNC at high $n(H_2)$ \overline{a} α \mathfrak{c}_2 and a slightly weal $\sum_{i=1}^{n}$ and a sugary weaker emission $\ddot{}$ $8¹$ $\frac{1}{2}$ ion than SiNC at high sion than SiNC at high $n(H_2)$ $\overline{}$

 \triangleright Previous estimation (Guelin et al. 2004): *(Corrected from different* µ*)* $T_B[SiCN]$ $T_B[SiNC]$ $\approx 2 \Rightarrow$ *N*[*SiCN*] *N*[*SiNC*] \approx 1

\triangleright Present estimation:

 \Rightarrow $\frac{N[SiCN]}{N[SiNC]}$ ≈ 2

SiCN is 2 times more abundant than SiNC !

V – Conclusions and outlook

- \triangleright New spectroscopical data / Isomerization pathways
- \triangleright New collisional data (first published for metal cyanides)
- \triangleright New set of radiative transfer calculations for the excitation of metal cyanides
- \triangleright Non-LTE calculations are required for each isomer
- \triangleright Selective cyanides chemistry in favor of the most stable isomers

Branching ratio of MN(C_{2n+1}N)H⁺ + e⁻ \rightarrow *<i>MCN/MNC* + C_{2n} *H reaction favor the most stable isomer ?*

- \triangleright Computation of collisional rate coefficients of metal cyanides/isocyanides with H₂ (differences may be larger as in the case of HCN/HNC)
- \triangleright Performed similar study for other metal cyanide/isocyanides such as NaCN / KCN / FeCN
- \triangleright Review metal-bearing molecules chemistry in the circumstellar gas (in particular determination of branching ratio of $MN(C_{2n+1}N)H^+ + e^- \rightarrow MCN/MNC + C_{2n}H$ reaction)
- \triangleright New observations of metal cyanides and isocyanides toward IRC+10216 and others circumstellar enveloppes

Acknowledgement

