

Reactions Involving Nitrile Anions in the Interstellar Medium: the CRESU Laboratory Apparatus Updates

Carles S., Bourgalais J., Capron M., Jamal Eddine N., Balaganesh M., Guillemin J.-C., Le Picard S.D., Faure A., Biennier L. and Joalland B.

ANIONS IN THE ISM

Atelier KIDA 2015

C ₆ H [−]	C ₄ H ⁻	C ₈ H [−]	C ₃ N	C ₅ N CN	
2006 McCarthy et al ApJ.652,L141	2007 Cernicharo et al A&A.467,L37	2007 Brünken/Remijan et al ApJ.664,L43/L47	2008 Thaddeus et al ApJ.677,1132	2008 2010 Cernicharo Agúndez et al et al ApJ.688,L83 A&A.51	7,L2
IRC+10216	IRC+10216	IRC+10216	IRC+10216	IRC+10216 IRC+102	16
(5661)E62;		Main che e = + CN CN has be +10216 (2)	mical pathway \rightarrow een detected in $300 R^*$, 100K) : (formation : $CN^- + hv$ the outer envelope of $CN/H_0 = 5 \times 10^{-6}$	1,6822009) 7,6822009)

Alternative :

500

0

-20

$HCN + H^{-}$	\rightarrow	$CN^- + H_2$
$C_x^- + N$	\rightarrow	$CN^{-} + C_{x-1}^{-}$
e ⁻ + MgNC	* ->	$CN^{-} + Mg$

Lucas et al. Ap&SS.224,293(19

20

Cordiner et al. ApJ.69

ANIONS IN THE ISM

SPATIAL DISTRIBUTION OF CN⁻: OBSERVATIONS VS. MODELS

A&A 517, L2 (2010)

M. Agúndez¹, J. Cernicharo², M. Guélin³, C. Kahane⁴, E. Roueff¹, J. Kłos⁵, F. J. Aoiz⁶, F. Lique⁷, N. Marcelino², J. R. Goicoechea², M. González García⁸, C. A. Gottlieb⁹, M. C. McCarthy⁹, and P. Thaddeus⁹

ANIONS IN THE TITAN ATMOSPHERE Atelier KIDA 2015

- Surprising detection of various and heavy anions -Cassini (*Waite et al. Science, 316, 870 2007*)
- Model using AE and chemistry : proposal for an identification (Fig: Vuitton et al. Planet. Space Sci. 57,1558, 2009)
- Ions may play a key role in the aerosol formation (*Lavvas et al. PNAS, 110, 2729, 2013*)

ANIONS IN THE TITAN ATMOSPHERE Atelier KIDA 2015

GROWTH OF NITRILES ? $CN^- + HC_3N \rightarrow C_3N^- + HCN$ $C_3N^- + HC_3N \rightarrow C_5N^- + HCN$

 ΔH^{0} = - 0.4 kJ.mol⁻¹ ΔH^{0} = - 48 kJ.mol⁻¹

(Žabka et al. Icarus, 219, 161, 2012) (Žabka et al. Int.J.Mass Spectrom. 367, 1, 2014)

KINETIC STUDIES AT VERY LOW TEMPERATURES : FROM 300K DOWN TO 13K

ION KINETIC STUDIES IN GAS PHASE (RENNES) Atelier KIDA 2015

Ion-molecule reactions :

• Electron attachment :

 $AB + e \rightarrow A^- + B$

• Ion Recombination :

 $A^{+} + e \rightarrow C + D$ $A^{+} + B^{-} \rightarrow C + D A$

FALP SET-UP 300K

UNIFORM SUPERSONIC FLOW

Atelier KIDA 2015

KINETIC ANALYSE

 $A + B \rightarrow kT + C + D$

- Uniform beam
- \Rightarrow Density, Speed v, T are constant
- \Rightarrow Spatial evolution = Temporal evolution
- Pseudo first order [A]>>[B⁻]

K_{first}

$HC_3N + C_3N^-$ REACTION

$C_3 N^-$ ANION FORMATION

Atelier KIDA 2015

 $BrC_{3}N + e (\leq 0.5 \text{ eV}) \rightarrow Br + C_{3}N^{-}$ $\rightarrow Br^{-} + C_{3}N^{-}$

06/05/2015

 $HC_3N + C_3^{15}N^-$ REACTION

(Biennier et al. In preparation)

$$BrC_{3}^{15}N + e (\leq 0.5 eV) \rightarrow Br + C_{3}^{15}N^{-}$$
$$\rightarrow Br^{-} + C_{3}^{15}N^{-}$$

06/05/2015

Sophie Carles

06/05/2015

$HC_3N + C_3^{15}N^-$ REACTION

Atelier KIDA 2015

 $C_3^{15}N = +HC_3N \rightarrow A - C_3N^- + HC_3^{15}N$ • $\Delta H^0 = 0 \text{ kJ.mol}^{-1}$ $C_3N^- + HC_3N \rightarrow A - e + neutral species$ • Reactive Detachment

X⁻ + A REACTION STUDY : LIMITATIONS

Studied Reaction is :

 $A + B^{-} \rightarrow C^{-} + D$ $\rightarrow E^{-} + F$

The B⁻ anion is formed by dissociative electron attachment inside the uniform supersonic flow:

 $BX + e \rightarrow X^{-} + B \qquad (1)$ $\rightarrow B^{-} + X \qquad (2)$

The vapor pressure of BX must be high at room temperature

- The electron attachment (EA) must be efficient at E(e)= 0 eV
- The electron attachment (EA) must be efficient / au_{hvdro}
- The main exit channel must be the ②
- A lot of charged species generate several undesirable reactions

Today :

- BrCN + e \rightarrow Br + CN⁻
- $BrC_3N + e \rightarrow Br + C_3N^-$

CONCLUSION – PERSPECTIVES: FUTUR CRESU SET-UP

Atelier KIDA 2015

 $A + B \longrightarrow C + D$ $\rightarrow E^{-} + F$

The B[−] anion is directly formed and selected outside the uniform supersonic flow \Rightarrow

Only 1 constraint

 The vapor pressure of BX must be high at room temperature

Several advantages

- Only B •
- Various B \bullet $C_xH^-; C_{x>3}N^-; C_x^-$
- k(T)•
- Branching Ratio (T) ullet

 N_2

Α

STAFF - SPONSORS

Atelier KIDA 2015

Nour JAMAL EDDINE

CINIC

Michaël

Jérémy

BOURGALAIS

BRETAGNE

JOALLAND

Jean-Claude **GUILLEMIN**

06/05/2015

- Alexandre Faure, Véronique Vuitton, Rolland Thissen (IPAG Lab., Grenoble)
- Christian Alcaraz, Claire Romanzin, Joël Lemaire, Essyllt Louarn (LCP Lab., Orsay)
- Ján Žabka, Miroslav Polášek (J. Heyrovský Institut of Physical Chemistry, Czech Republic)

UNIVERSITÉ

THANKS FOR YOUR ATTENTION