

Laboratory study of thermal and non-thermal desorption processes of interstellar ices

Mathieu Bertin, Mikhaïl Doronin, Xavier Michaut, Laurent Philippe, Pascal Jeseck, & Jean-Hugues Fillion

Motivations: Interstellar molecular ices

Cold regions of ISM (10 – 100 K) : Rich variety of molecular species

 H_2 , CO, H_2 O, CO₂ HCOOCH₃, CH₃OH, CH₃CN...

Molecules form or condense at the surface of micro-sized dust grains

Ices = main reservoir of molecules in the cold interstellar region

Molecules are mainly detected in the gas phase

Solid-gas exchanges play a major role in gas phase abundance ratio and chemistry

Desorption processes need to be quantified in order to be considered in astrochemical models

Motivations: Desorption processes

Motivations: Desorption processes

- Energetic particles
- Exothermic recombinations
- Shocks
- UV photodesorption

Thermal desorption: a joint experimental-theoretical approach

• How to quantify thermal desorption?

• Aim: access reliable values for adsorption energies

Desorbing flux :
$$\phi = -\frac{d\theta_{surface}}{dT} = \frac{v}{\beta} \cdot \theta^n \cdot e^{-\frac{L_{ad}}{kT}}$$

$$\phi = -\frac{d\theta_{surface}}{dT} = \frac{\nu}{\beta} \cdot \theta^{n} \cdot e^{-\frac{E_{ads}}{kT}}$$

Our method :

- First order approximation (n = 1)
- Determination of v from a set of TPD curves, made at different heating rates β
- Consideration of a distribution of adsorption energies

$$\phi(T) = \frac{1}{\beta} v \sum_{i} \theta_{i} e^{-\frac{E_{i}}{kT}}$$

0.8 ML CH₃OH / graphite

Adsorption energies distribution

Adsorption energies distribution

Thermal desorption: the case of methanol on graphite

Thin ices: (sub)Monolayers

0.8 ML CH₃OH / graphite

The 'good' value is the one for which the energy distribution is independent from the heating rate

- method to extract quantitative parameters (E_{ads}, v) from experimental data
- good agreement with theoretical values of adsorption energies from the LCT team
- results compare well with previous experimental results from with Smith et al. 2014 et Bolina et al. 2005
- limitations :
 - recquires to have a very good reproducibility on the ice growing method
 - diffusion is neglected

Some systems studied so far (data for low coverage regime ~ 0.2 ML):

	Amorphous Water ice		Crystalline Water ice		Graphite		Quartz α (0001)	
	∨ (s⁻¹)	E _{ads} (meV)	∨ (s⁻¹)	E _{ads} (meV)	∨ (s⁻¹)	E _{ads} (meV)	∨ (s⁻¹)	E _{ads} (meV)
CH ₃ OH					1017	465		
CH ₃ CN			1018	> 570	2.10 ¹⁶	480	1017	540
CH ₃ NC			1018	> 540	5.10 ¹⁷	500	1017	480
HCOOCH ₃	10 ¹³⁻¹⁵	370	1013-15	380				
Ar			1010	75				
Kr			2.10 ¹²	125				
Xe			7.10 ¹²	173				

• UV photodesorption as a source for gas phase molecules in cold media:

> Dominik et al., 2005 Hersant et al., 2009 Guzman et al., 2011

...

• UV photodesorption of simple molecules has been studied in laboratory mainly using discharge lamp, with varying spectra, as UV

sources: Westley et al., 1995 Öberg et al., 2007, 2008, 2009 Muñoz-Caro et al., 2010

Our approach: determniation of photodesorption rate as a function of the photon energy

- to take into account different UV fields
- to access molecular mechanism responsible for the desorption

Experiments in the SPICES instrument (UPMC) $P \sim 10^{-10}$ Torr

Substrate Highly Oriented Pyrolitic Graphite (HOPG) Au polycristallin Quartz (0001)

T ~ 10 K

Substrate Highly Oriented Pyrolitic Graphite (HOPG) Au polycristallin Quartz (0001)

T ~ 10 K

UV Photodesorption: the case of CO

Photodesorption efficiency very dependent on photon energy

UV *Photodesorption*: *case of mixed ices*

UV *Photodesorption*: indirect effects on photodesorption rates

• CO and N₂ co-adsorbed

Bertin et al., ApJ 2013

	Pure Ices	Mixed Ice (1:1)	Layered ice (1ML N ₂ / CO)
CO photodesorption (molecule/photon)	1.0·10 ⁻²	3.0·10 ⁻³	2.9·10 ⁻³
N ₂ photodesorption (molecule/photon)	2.2·10 ⁻³	3.0·10 ⁻³	5.1·10 ⁻³

UV spectra in dense cores from Gredel 1987

•CO co-adsorbed with H₂O

Bertin et al., Phys Chem Chem Phys 2012

Photodesorption of CO interacting with H₂O molecules is strongly suppressed

UV *Photodesorption*: What about photodissociation?

• Cases of pure O₂ and pure CO₂ Fayolle et al., A&A 2013 Fillion et al. Faraday Disc 2014

UV *Photodesorption*: UV photodesorption of COMs

• The case of methanol

Recent data from last SOLEIL beamtime Treatment still in process

The main desorbing signal comes from the photofragments of methanol (CH₃, OH, CO, HCO, H₂CO...)

No dependency in the CO/methanol ratio is observed for the fragments desorption

UV *Photodesorption*: UV photodesorption of COMs

• The case of methanol

Recent data from last SOLEIL beamtime Treatment still in process

Desorption of the intact methanol is only observed for pure CH₃OH ices, and is comparatively weaker than the desorption of the fragments

UV *Photodesorption*: conclusions and open questions

How to take into account wavelength dependency

Wavelength-dependent Photodesorption spectra can be used with any UV spectra to obtain integrated photodesorption rates

• How to take into account indirect effects: Important role of the ice composition

Measures of photodesorption **rates in CO-rich / H₂O-rich ices** with different stoechiometries

Only the **composition of the top-layers** needs to be considered

Photodissociating molecules: photofragments vs intact molecules

Photodesorption of 'complex' molecules is **dominated by the fragments desorption**

Photodesorption rates of photofragments/photoproducts can be measured

Photodesorption of *reactive fragments may participate to the origin of COMs in the gas* of the cold regions

Acknowledgments

Co-workers

H. Poderoso, M. Doronin, X. Michaut, L.
Image: Comparison of the compariso

Supports

SOLEIL synchrotron, Beamline DESIRS

DIM – Astrophysique et Conditions d'Apparition de la Vie

PHC program Van Gogh

Labex MiChem

Programme national PCMI