

J. Žabka, M. Polášek, I. Ndiaye, V. Křížová, I. Zymak, Ch. Alcaraz, C. Romanzin

> J. Heyrovsky Institute of Physical Chemistry of the ASCR, v. v. i. LCP Université Paris-Sud, Orsay, France

Outline

Introduction

- motivation
- Titan, Cassini Huygens

Experimental approach

- Quattro Premier XE tandem quadrupole mass spectrometer
- atmospheric chemical ionization, T-wave collision cell

Results and Discussion

- reaction $CN^- + HC_3N$
- Proposal reaction mechanism (PRM)
- Experimental confirmation of PRM
- laboratory data vs. CAPS-Cassini spectrum

Conclusions

Titan

It is the only moon in the Solar System with a thick nitrogen atmosphere

Many analogies with the early Earth and its organic chemistry with the terrestrial prebiotic chemistry

Titan after Cassini - Hugens

- ionosphere ~ 950-1300 km (p ~ 10^{-4} Pa) positive ions ~ 100-2000 cm⁻³ negative ions ~ 50-150 cm⁻³

-negative ions observed [1] in Titan's upper atmosphere, (CN⁻)

- reaction CN⁻ + HC₃N is of particular interest
- its kinetics has been experimentally investigated [2]:

 $CN^{-} + HC_{3}N \rightarrow C_{3}N^{-} + HCN$ $k_{exp} = 4.8 \times 10^{-9} \text{ cm}^{3/s}$

This work:

-different reaction regimes (i.e. pressure of HC₃N in the cell) -gradual increase of carbon chain by negative ion-molecule reactions observed

-Experimental verification of proposal reaction mecanism

[1] V. Vuitton et al., *Planetary and Space Science*, 57, 13, 1558, (2009)

[2] S. Carles, F. Adjali, C. Monnerie, J.-C. Guillemin, J.-L.L. Garrec, Icarus, 211(1), 901-905 (2011)

Laboratory experiments

Experimental Setup

Corona Discharge Pin

Primary ion preparation:

Sample Cone Tip

addressed with a DC voltage pulse ...to provide an electromotive force

a) Proposal reaction mecanism

$CN + HC_3N$

J. Žabka et al. / Icarus 219 (2012) 161–167

Results and Discussion : CN⁻ + HC₃N

Results and Discussion :

50C ₃ N ⁻				
74				
98 C ₇ N ⁻	$[(\mathbf{H}\mathbf{C}_{3}\mathbf{N})_{n}\cdot\mathbf{C}_{3}\mathbf{N}^{-}] - \mathbf{a}\mathbf{H}$	CN		
$101[C_2N(HC_2N)]^{-1}$	'Parent'	$-HC_2N$	'Product'	m/z
$125[C_5N(HC_3N)]^{-1}$	$(HC_3N)_2 \cdot C_3N^-$		$HC_3N \cdot C_4N^-$	113
$149[C_7N(HC_3N)]^{-1}$	$(HC_3N)_2 \cdot C_5N^-$		$HC_3N \cdot C_6N^-$	137
	$(HC_3N)_2 \cdot C_7N^-$		\rightarrow HC ₃ N·C ₈ N ⁻	161
152[C ₃ N(HC ₃ N) ₂] ⁻				
$176[C_5N(HC_3N)_2]^{-1}$	$(HC_3N)_3 \cdot C_3N^-$		$(HC_3N)_2 \cdot C_4N^-$	164
$200[C_5N(HC_3N)_2]^2$	$(HC_3N)_3 \cdot C_5N^-$		$(HC_3N)_2 \cdot C_6N^-$	188
	$(HC_3N)_3 \cdot C_7N^-$		$(HC_3N)_2 \cdot C_8N^-$	212
$203[C_3N(HC_3N)_3]$	$(HC_2N)_2 \cdot C_0N^-$	>	$(HC_2N)_2 \cdot C_{10}N^-$	236
$251 \qquad [C_{1}N_{1} + (HC_{3}N_{3})]$	(120321)3 0921		(11031.)2 0101.	200
$251[C_{7}N(HC_{3}N)_{3}]$ 275 [C_{8}N (HC_{8}N)_{3}]	$(HC_2N)_4 \cdot C_2N^-$		$(HC_2N)_2 \cdot C_4N^-$	215
	$(HC_2N)_4 \cdot C_5N^-$		$(HC_2N)_2 \cdot C_4N^-$	239
$278[C_5N(HC_3N)_4]^{-1}$	$(HC_2N)_4 \cdot C_7N^-$		$(HC_3N)_3 \cdot C_0N^-$	263
302[C ₇ N(HC ₃ N) ₄]	$(HC_2N)_4 \cdot C_0N^-$		$(HC_2N)_2 \cdot C_{10}N^-$	287
326[C ₉ N(HC ₃ N) ₄] ⁻	$(HC_3N)_4 C_{12}N^-$		$(HC_3N)_3 \cdot C_{10}N^-$	311
350[C ₁₁ N(HC ₃ N) ₄] ⁻			(110311)3 01211	
$353[C_7N(HC_3N)_5]$				
$5/7[C_9N(HC_3N)_5]$				
$401[U_{11}N(HU_{3}N)_{5}]$				

Results and Discussion: Laboratory v.s. Cassini

Proposal reaction scheme

First step: $CN^- + HC_3N \rightarrow C_3N^- + HCN$

11

1. Growth of $C_x N^-$ anions (reaction with HC₃N)

- 2. Growth of $(HC_3N)_2C_xN^-$ anions (reaction with HC_3N)
- 3. Growth of $(HC_3N)_xC_5N^-$ anions (reaction with HCN)
- 4. Dissociation of $(HC_3N)_2C_xN^-$ anions

b) Verification of Proposal reaction mecanism

1. Growing $C_x N$ anions

$C_{x}N^{-} + HC_{3}N$

(x = 3, 5, 7, 9)

50C ₃ N ⁻	101 [C ₃ N(HC ₃ N)] ⁻	152 $[C_3N(HC_3N)_2]^-$	203 [C ₃ N(HC ₃ N) ₃] ⁻	278 [C ₅ N(HC ₃ N) ₄] ⁻	353 [C ₇ N(HC ₃ N) ₅] ⁻
74	125[C ₅ N(HC ₃ N)] ⁻	$176[C_5N(HC_3N)_2]^{-1}$	227 [C ₅ N(HC ₃ N) ₃] ⁻	302 [$C_7N(HC_3N)_4$] ⁻	377 [C ₉ N(HC ₃ N) ₅] ⁻
98 C ₇ N ⁻	149[C ₇ N(HC ₃ N)] ⁻	200 [C ₅ N(HC ₃ N) ₂] ⁻	251 [C ₇ N(HC ₃ N) ₃] ⁻	326 [C ₉ N(HC ₃ N) ₄] ⁻	401 [C ₁₁ N(HC ₃ N) ₅] ⁻
			275[C ₉ N(HC ₃ N) ₃] ⁻	350 [C ₁₁ N(HC ₃ N) ₄] ⁻	

b) Verification of Proposal reaction mecanism

2. Growing $(HC_3N)_2C_xN^2$ anions

$(HC_3N)_2 \cdot C_3N^2 + HC_3N^3$ $(HC_3N)_2 \cdot C_5N^2 + HC_3N^3$

m/z

rel. intensity

3. Growing $(HC_3N)_*C_5N^-$ anions

$(HC_3N)_2 \cdot C_5N^2 + HCN$ $(HC_3N)_3 \cdot C_5N^2 + HCN$

b) Verification of Proposal reaction mecanism 4. Dissociation of $(HC_3N)_2C_2N$ anions **Collision Induced Dissociation (CID):** CID (Ar) $\sim 3eV$ $(HC_3N)_2$. $C_3N \rightarrow$ $(HC_3N)_2$. $C_5N^2 \rightarrow$

Main channel: Elimination of HCN

Proposal reaction scheme

First step: $CN^- + HC_3N \rightarrow C_3N^- + HCN$

Growth of C_xN⁻ anions (reaction with HC₃N)
Growth of (HC₃N)₂C_xN⁻ anions (reaction with HC₃N)
Growth of (HC₃N)_xC₅N⁻ anions (reaction with HCN)
Dissociation of (HC₃N)₂C_xN⁻ anions

J. Žabka et al. / International Journal of Mass Spectrometry 367 (2014) 1-9

Results and Discussion: elimination of HCN

CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ , in kJ mol⁻¹, ZPVE incl.

Results and Discussion: Solvation driven reactions

CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ, in kJ mol-1, ZPVE incl.

Results and Discussion: Solvation driven reactions

Destruction of anions : - photodetachment [0.4-1.0x10¹³ cm⁻²s⁻¹]

- collisions with energetic heavy particles [10⁵cm⁻²s⁻¹sr⁻¹keV⁻¹]

ion-ion recombination $[I^+ \sim 10^3 \text{ cm}^{-3}]$ v.s. N~10⁹ cm⁻³]

- Photodetachment cross-section for C_3N^- at 266nm is **1.43x10**⁻¹⁷ cm² [1]
- Solar irradiation at Saturn 0.075 W/m² in 280-200nm ---> $0.4-1.0 \times 10^{13} \text{ cm}^{-2} \text{s}^{-1}$ [2]

- Mean life time of C_3N^- in range 6600-18500 s

- Mean free paths of $C_3 N^-$ ions at pressures of 10^{-7} mbar ~ **370m**
- Boltzmann velocity at $170K \sim 70 ms^{-1}$

C_3N^- ions undergo ~ 1300-3600 collisions before are destroyed by photodetachment

Solvation driven reactions are not excluded in of Titan's ionosphere

[1] S.S. Kumar et al., Photodetachment as a destruction mechanism for $CN^{-}and C_{3}N^{-}anions$, Astrophys. J. 776 (2013) 25 [2] C.A. Gueymard, The sun's total and spectral irradiance for solar energy appli-cations, Sol. Energy 76 (2004) 423

Conclusion

- First experimental and theoretical characterization of the complex anions derived from cyanoacetylene
- Experimental results: Reaction mechanism was proposed
- bare $C_{2n+1}N^-$ anions react with HC₃N rather slowly by elimination of HCN and formation of $C_{2n+3}N^-$ anion
- When the $C_{2n+1}N^-$ anions are solvated by one or more HC₃N molecules, this reaction becomes significantly more efficient (Solvation Driven Reaction)
- Cyanoacetylene is one of the prominent N-containing organic species in Titan atmosphere → important role in the ionospheric chemistry in Titan

Possible way of formation of large anions found in the ionosphere of Titan

Future work: - Reaction mechanisms and the rate constants at temperatures 80-300K (Variable Temperature SIFT) http://www.esa.int , http://saturn.jpl.nasa.gov, http://spaceprobes.kosmo.cz ²⁶

dr. CH. Alcaraz

dr. C. Romanzine

dr. M. Polášek

dr. J. Žabka

dr. I. Zymak

Mgr. V. Křížová Bc. M. Obluková

Acknowledgements

- Czech Science Foundation (grant No.14-19693S),

-Ministry of Education Youth and Sports of Czech Republic (grant No. LD14024)

-COST Action CM1204 (XLIC),

-RTRA "Triangle de la Physique (project GIN)

-French planetology program (PNP)

Bc. Z. Flenerová

dr. I. Ndyaie