An updated list of photodissociation and ionisation rates in stellar and cosmic-ray induced radiation fields

A. N. Heays, A. D. Bosman, and E. F. van Dishoeck

Leiden Observatory, The Netherlands

- Astrochemically relevant molecules, ions, and radicals
 - Some new additions
 - Recent lab./theor. studies included
- Photodissociation and ionisation rates
 - Interstellar
 - Circumstellar
 - Cosmic-ray induced radiation field
 - Detailed treatment of wavelength dependence
- Depth-dependent shielding
 Detailed data for N₂
- Simple rates and parameterisations for input to astrochemical models

Sources of astrochemical photo rates

Leiden database

Rates, depth-dependence

PHIDRATES

- Huebner et al. 1992, 2015
- Rates and product branching
- Solar and planetary focus
- Cosmic ray photodissociation
 - Gredel et al. 1987, 1989

Diatomic molecules

- H₂ e.g., Abgrall et al., Sternberg et al. 2014
- CO e.g., Visser et al. 2009
- N₂ e.g., Li et al. 2013, Heays et al. 2014
- Astrochemistry databases
 - UMIST / UDFA / RATE2012
 - KIDA (+OSU)
 - VAMDC virtual database

Often broadband low-resolution measurements.

Experimental cross sections – H₂O

Often broadband low-resolution measurements.

Complemented by higher-resolutions.

Calculated cross sections

Sources of atomic/molecular cross section

- MPI-Mainz UV/VIS spectral atlas
- Leiden database
- PHIDRATES
- MOLAT Paris Observatory
- Harvard CfA molecular database
- The opacity project (atoms/ions)
- General literature

Widely varying thresholds and peak ranges

Qualitative photodissociation regimes

photon frequency

Larger molecules tend to be unstructured.

Photoionisation usually continuous with wavelength.

photo rate = \int intensity \times cross section $d\lambda$

Here we consider structured radiation fields and wavelength shorter than 91.2 nm.

Cosmic-ray induced radiation

Critically dependent on high-resolution cross sections for structured molecules.

Photodissociation rates

ISRF photodissociation rates not much changed

Photodissociation rates

Significant dependence on radiation field

Photodissociation and ionisation due to cosmic rays

 ζ = ionisation rate of H₂ due to cosmic rays. Rates are ×10⁻⁴ of those in the standard ISRF.

Photodissociation and ionisation due to cosmic rays

Well worth the update

Radiation shielding

Considering: Dust, H_2 , H, self-shielding

Simple model: Single-sided illumination

Dust optical properties - Draine et al.

Shielding by dust – 14 molecules

Self-shielding - N₂

- Sharply peaked ¹⁴N₂ lines quickly saturate
- ¹⁴N¹⁵N is unaffected by a saturated ¹⁴N₂ column

Self shielding in the ISRF – 14 molecules

More realistic shielding

In the case of N_2 and CO, comparable effects from dust, H_2 , and self-shielding.

- A review of cross sections, rates, and shielding functions for astrochemically-important molecules
- Full wavelength dependence of cross sections and radiation fields
- Publication on the internet home.strw.leidenuniv.nl/~ewine/photo

In astrochemistry:

- Characterisation of the remote radiation fields
- Variable optical properties of dust grains
- In chemical physics:
 - Calculation of absolute cross section for radical species
 - Variation of molecular cross sections with temperature and isotopologue
 - Photofragment branching of neutral species

Effect new photodissociation rates on a simple astrochemical model

Photofragment branching – CH₄

Very few neutral branching ratios measured. Dissociative-ionisation branching not so bad.

Modelled N₂ spectrum $b'^{1}\Sigma_{u}^{+}(v'=20) \leftarrow X^{1}\Sigma_{g}^{+}(v''=0)$

- Upper: Model spectrum.
- Lower: Laboratory spectrum (Fourier transform spectroscopy, synchrotron SOLEIL).

Less sensitive – H₂O

ISRF photodissociation rate

Highest – lowest resolution data = $7.4 - 8.3 \times 10^{-10} \text{ s}^{-1}$

Cosmic-ray induced photodissociation rate ($\times 10^{-16}$ s⁻¹)Shielded by...Highest res.Lowest res.Dust20942250Dust, H219141918Dust, H2, H, self, etc.18901896

1 = unshielded, 0 = no photons